skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 5, 2026

Title: Ultrahigh-Purity Single-Photon Emission from 2D WSe 2 via Effective Suppression of Classical Emission
Award ID(s):
2246564 1943895 2235276 2326628 2503230 1753054 2103842 2443684 2326837
PAR ID:
10612870
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
Nano Letters
ISSN:
1530-6984
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Realizing stimulated emission from defects in 2D‐layered semiconductors has the potential to enhance the sensitivity of characterizing their defects. However, stimulated emission from defects in layered materials presents a different set of challenges in carrier lifetime and energy level design and is not achieved so far. Here, photoluminescence (PL) spectroscopy, Raman spectroscopy, and first‐principles theory are combined to reveal an anomalous PL intensity–temperature relation and strong polarization effects at a defect emission peak in annealed multilayer MoS2, suggesting defect‐based stimulated emission. The emergence of stimulated emission behavior is also controllable (by temperature) and reversible. The observed stimulated emission behavior is supported by a three‐level system involving two defect levels from chalcogen vacancies and a pump level from the conduction band edge. First‐principles calculations show that the special indirect gap that enables stimulated emission is not native to pristine bulk MoS2and only emerges under thermal strain. 
    more » « less
  2. null (Ed.)
  3. Abstract Engineering a material's work function is of central importance for many technologies and in particular electron emitters used in high‐power vacuum electronics and thermionic energy converters. A low work function surface is typically achieved through unstable surface functional species, especially in high power thermionic electron emitter applications. Discovering and engineering new materials with intrinsic, stable low work functions obtainable without volatile surface species would mark a definitive advancement in the design of electron emitters. This work reports evidence for the existence of a low work function surface on a bulk, monolithic, electrically conductive perovskite oxide: SrVO3. After considering the patch field effect on the heterogeneous emitting surface of the bulk polycrystalline samples, this study suggests the presence of low work function (≈2 eV) emissive grains on SrVO3surface. Emission current densities of 10–100 mA cm–2at ≈1000 °C, comparable to commercial LaB6thermionic cathodes, indicative of an overall effective thermionic work function of 2.3–2.7 eV are obtained. This study demonstrates that perovskites like SrVO3may have intrinsically low work functions comparable to commercialized W‐based dispenser cathodes and suggests that, with further engineering, perovskites may represent a new class of low work function electron emitters. 
    more » « less