skip to main content


Search for: All records

Award ID contains: 1944796

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Sub-nanometer-resolved TERS provides a systematic way for investigating tip-molecule interaction and molecular motions, enabling a promising approach to examine on-surface reaction mechanisms and catalysis at the microscopic level.

     
    more » « less
  2. Abstract

    The chemical interrogation of individual atomic adsorbates on a surface significantly contributes to understanding the atomic-scale processes behind on-surface reactions. However, it remains highly challenging for current imaging or spectroscopic methods to achieve such a high chemical spatial resolution. Here we show that single oxygen adatoms on a boron monolayer (i.e., borophene) can be identified and mapped via ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS) with ~4.8 Å spatial resolution and single bond (B–O) sensitivity. With this capability, we realize the atomically defined, chemically homogeneous, and thermally reversible oxidation of borophene via atomic oxygen in UHV. Furthermore, we reveal the propensity of borophene towards molecular oxygen activation at room temperature and phase-dependent chemical properties. In addition to offering atomic-level insights into the oxidation of borophene, this work demonstrates UHV-TERS as a powerful tool to probe the local chemistry of surface adsorbates in the atomic regime with widespread utilities in heterogeneous catalysis, on-surface molecular engineering, and low-dimensional materials.

     
    more » « less
  3. Free, publicly-accessible full text available July 10, 2024
  4. Gaining valuable insight into chemistry-related fields, such as molecular and catalytic systems, surface science, and biochemistry, requires probing physical and chemical processes at the sub-nanoscale level. Recent progress and advancements in nano-optics and nano-photonics, particularly in scanning near-field optical microscopy, have enabled the coupling of light with nano-objects using surface plasmons with sub-nanoscale precision, providing access to photophysical and photochemical processes. Herein, this review highlights the basic concepts of surface plasmons and recent experimental findings of tip-assisted plasmon-induced research works and offers a glimpse into future perspectives.

     
    more » « less
  5. Gaining valuable insights into chemistry-related fields such as molecular and catalytic systems, surface science, and biochemistry requires probing physical and chemical processes at the sub-nanoscale level. Recent progress and advancements in nano-optics and nano-photonics, particularly in scanning near-field optical microscopy, have enabled the coupling of light with nano-objects using surface plasmons with sub-nanoscale precision, providing access to photophysical and photochemical processes. Herein, this review highlights the basic concepts of surface plasmons, recent experimental findings of tip-assisted plasmon-induced research works and offers a glimpse into future perspectives. 
    more » « less
  6. The development of new characterization methods has resulted in innovative studies of the properties of two-dimensional (2D) materials. Observations of nanoscale heterogeneity with scanning probe microscopy methods have led to efforts to further understand these systems and observe new local phenomena by coupling light-based measurement methods into the tip-sample junction. Bringing optical spectroscopy into the near-field in ultrahigh vacuum at cryogenic temperatures has led to highly unique studies of molecules and materials, yielding new insight into otherwise unobservable properties nearing the atomic scale. Here, we discuss studies of 2D materials at the subnanoscale where the measurement method relies on the detection of visible light scattered or emitted from the scanning tunneling microscope (STM). We focus on tip-enhanced Raman spectroscopy, a subset of scattering-type scanning near-field optical microscopy, where incident light is confined and enhanced by a plasmonic STM tip. We also mention scanning tunneling microscope induced luminescence, where the STM tip is used as a highly local light source. The measurement of light-matter interactions within the atomic STM cavity is expected to continue to provide a useful platform to study new materials. 
    more » « less
  7. Abstract Surface-bound reactions have become a viable method to develop nanoarchitectures through bottom-up assembly with near atomic precision. However, the bottom-up fabrication of nanostructures on surfaces requires careful consideration of the intrinsic properties of the precursors and substrate as well as the complex interplay of any interactions that arise in the heterogeneous two-dimensional (2D) system. Therefore, it becomes necessary to consider these systems with characterization methods sensitive to such properties with suitable spatial resolution. Here, low temperature ultrahigh vacuum scanning tunneling microscopy (STM) and tip-enhanced Raman spectroscopy (TERS) were used to investigate the formation of 2D covalent networks via coupling reactions of tetra(4-bromophenyl)porphyrin (Br 4 TPP) molecules on a Ag(100) substrate. Through the combination of STM topographic imaging and TERS vibrational fingerprints, the conformation of molecular precursors on the substrate was understood. Following the thermally activated coupling reaction, STM and TERS imaging confirm the covalent nature of the 2D networks and suggest that the apparent disorder arises from molecular flexibility. 
    more » « less