Abstract Plasmon polaritons, or plasmons, are coupled oscillations of electrons and electromagnetic fields that can confine the latter into deeply subwavelength scales, enabling novel polaritonic devices. While plasmons have been extensively studied in normal metals or semimetals, they remain largely unexplored in correlated materials. In this paper, we report infrared (IR) nano-imaging of thin flakes of CsV3Sb5, a prototypical layered Kagome metal. We observe propagating plasmon waves in real-space with wavelengths tunable by the flake thickness. From their frequency-momentum dispersion, we infer the out-of-plane dielectric function$${{{{{{\boldsymbol{\epsilon }}}}}}}_{{{{{{\boldsymbol{c}}}}}}}$$ that is generally difficult to obtain in conventional far-field optics, and elucidate signatures of electronic correlations when compared to density functional theory (DFT). We propose correlation effects might have switched the real part of$${{{{{{\boldsymbol{\epsilon }}}}}}}_{{{{{{\boldsymbol{c}}}}}}}$$ from negative to positive values over a wide range of middle-IR frequencies, transforming the surface plasmons into hyperbolic bulk plasmons, and have dramatically suppressed their dissipation.
more »
« less
Localized surface plasmon controlled chemistry at and beyond the nanoscale
Gaining valuable insight into chemistry-related fields, such as molecular and catalytic systems, surface science, and biochemistry, requires probing physical and chemical processes at the sub-nanoscale level. Recent progress and advancements in nano-optics and nano-photonics, particularly in scanning near-field optical microscopy, have enabled the coupling of light with nano-objects using surface plasmons with sub-nanoscale precision, providing access to photophysical and photochemical processes. Herein, this review highlights the basic concepts of surface plasmons and recent experimental findings of tip-assisted plasmon-induced research works and offers a glimpse into future perspectives.
more »
« less
- Award ID(s):
- 1944796
- PAR ID:
- 10404942
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Chemical Physics Reviews
- Volume:
- 4
- Issue:
- 2
- ISSN:
- 2688-4070
- Page Range / eLocation ID:
- Article No. 021301
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Modern integrated circuits have active components on the order of nanometers. However, optical devices are often limited by diffraction effects with dimensions measured in wavelengths. Nanoscale photodetectors capable of converting light into electrical signals are necessary for the miniaturization of optoelectronic applications. Strong coupling of light and free electrons in plasmonic nanostructures overcomes these limitations by confining light into sub-wavelength volumes with intense local electric fields. Localized electric fields are intensified at nanorod ends and in nanogap regions between nanostructures. Hot carriers generated within these high-field regions from nonradiative decay of surface plasmons can be injected into the conduction band of adjacent semiconductors, enabling sub-bandgap photodetection. The optical properties of these plasmonic photodetectors can be tuned by modifying antenna materials and geometric parameters like size, thickness, and shape. Electrical interconnects provide connectivity to convert light into electrical signals. In this work, interconnected nanogap antennas fabricated with 35 nm gaps are encapsulated with ALD-deposited [Formula: see text], enabling photodetection via Schottky barrier junctions. Photodetectors with high responsivity (12[Formula: see text][Formula: see text]A/mW) are presented for wavelengths below the bandgap of [Formula: see text] (3.2[Formula: see text]eV). These plasmonic nanogap antennas are sub-wavelength, tunable photodetectors with sub-bandgap responsivity for a broad spectral range.more » « less
-
Abstract Despite remarkable progress in the development of halide perovskite materials and devices, their integration into nanoscale optoelectronics has been hindered by a lack of control over nanoscale patterning. Owing to their tendency to degrade rapidly, perovskites suffer from chemical incompatibility with conventional lithographic processes. Here, we present an alternative, bottom-up approach for precise and scalable formation of perovskite nanocrystal arrays with deterministic control over size, number, and position. In our approach, localized growth and positioning is guided using topographical templates of controlled surface wettability through which nanoscale forces are engineered to achieve sub-lithographic resolutions. With this technique, we demonstrate deterministic arrays of CsPbBr3nanocrystals with tunable dimensions down to <50 nm and positional accuracy <50 nm. Versatile, scalable, and compatible with device integration processes, we then use our technique to demonstrate arrays of nanoscale light-emitting diodes, highlighting the new opportunities that this platform offers for perovskites’ integration into on-chip nanodevices.more » « less
-
Abstract Surface plasmons, collective electromagnetic excitations coupled to conduction electron oscillations, enable the manipulation of light–matter interactions at the nanoscale. Plasmon dispersion of metallic structures depends sensitively on their dimensionality and has been intensively studied for fundamental physics as well as applied technologies. Here, we report possible evidence for gate-tunable hybrid plasmons from the dimensionally mixed coupling between one-dimensional (1D) carbon nanotubes and two-dimensional (2D) graphene. In contrast to the carrier density-independent 1D Luttinger liquid plasmons in bare metallic carbon nanotubes, plasmon wavelengths in the 1D-2D heterostructure are modulated by 75% via electrostatic gating while retaining the high figures of merit of 1D plasmons. We propose a theoretical model to describe the electromagnetic interaction between plasmons in nanotubes and graphene, suggesting plasmon hybridization as a possible origin for the observed large plasmon modulation. The mixed-dimensional plasmonic heterostructures may enable diverse designs of tunable plasmonic nanodevices.more » « less
-
Abstract Strong light-matter interactions in localized nano-emitters placed near metallic mirrors have been widely reported via spectroscopic studies in the optical far-field. Here, we report a near-field nano-spectroscopic study of localized nanoscale emitters on a flat Au substrate. Using quasi 2-dimensional CdSe/CdxZn1-xS nanoplatelets, we observe directional propagation on the Au substrate of surface plasmon polaritons launched from the excitons of the nanoplatelets as wave-like fringe patterns in the near-field photoluminescence maps. These fringe patterns were confirmed via extensive electromagnetic wave simulations to be standing-waves formed between the tip and the edge-up assembled nano-emitters on the substrate plane. We further report that both light confinement and in-plane emission can be engineered by tuning the surrounding dielectric environment of the nanoplatelets. Our results lead to renewed understanding of in-plane, near-field electromagnetic signal transduction from the localized nano-emitters with profound implications in nano and quantum photonics as well as resonant optoelectronics.more » « less
An official website of the United States government
