skip to main content


Title: Chemically identifying single adatoms with single-bond sensitivity during oxidation reactions of borophene
Abstract

The chemical interrogation of individual atomic adsorbates on a surface significantly contributes to understanding the atomic-scale processes behind on-surface reactions. However, it remains highly challenging for current imaging or spectroscopic methods to achieve such a high chemical spatial resolution. Here we show that single oxygen adatoms on a boron monolayer (i.e., borophene) can be identified and mapped via ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS) with ~4.8 Å spatial resolution and single bond (B–O) sensitivity. With this capability, we realize the atomically defined, chemically homogeneous, and thermally reversible oxidation of borophene via atomic oxygen in UHV. Furthermore, we reveal the propensity of borophene towards molecular oxygen activation at room temperature and phase-dependent chemical properties. In addition to offering atomic-level insights into the oxidation of borophene, this work demonstrates UHV-TERS as a powerful tool to probe the local chemistry of surface adsorbates in the atomic regime with widespread utilities in heterogeneous catalysis, on-surface molecular engineering, and low-dimensional materials.

 
more » « less
Award ID(s):
1944796 1828019
NSF-PAR ID:
10365502
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bilayer (BL) two-dimensional boron (i.e., borophene) emerges very recently and holds promise for fascinating physical properties and a variety of electronic applications. Despite this potential, the fundamental chemical properties of BL borophene which form the critical foundation of practical applications has been unexplored. Here, we present atomic-level chemical studies of BL borophene using ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS). UHV-TERS identifies the vibrational fingerprint of BL borophene from mixed-dimensional borophene polymorphs with angstrom-scale chemical spatial resolution. The observed Raman mode is directly correlated with the vibrations of interlayer boron-boron bonds, validating the three-dimensional lattice geometry of BL borophene. By virtue of the single-bond sensitivity of UHV-TERS to oxygen adatoms, we demonstrate the enhanced chemical stability of BL borophene compared to its monolayer counterpart by exposure to controlled oxidizing atmospheres under UHV. In addition to revealing fundamental chemical insights into BL borophene, this work establishes UHV-TERS as a powerful tool to probe interlayer bonding and chemical properties of layered materials at the atomic scale. 
    more » « less
  2. Abstract

    Scanning tunneling microscopy‐based tip‐enhanced Raman spectroscopy (TERS) is a powerful analytical technique for surface characterization, providing both topological and chemical information with sub‐nm spatial resolution, well below the diffraction limit of light. In order to take advantage of plasmonic activity, it is necessary to use silver (Ag) probes due to their plasmonic range in the visible region. However, the Ag probe fabrication process remains challenging and is not yet standardized in practice, leading to inconsistent enhancements even for two similar types of tips prepared consecutively. In this work, we demonstrate an alternative way to reuse and recycle a plasmonic tip for distinct molecular systems inside an ultrahigh vacuum (UHV). We provide evidence of the ability to recycle tips without compromising the TERS experimental results. A long‐term preservation (>2 months) of plasmonically active probes inside UHV is demonstrated.

     
    more » « less
  3. Abstract

    The drive for atom efficient catalysts with carefully controlled properties has motivated the development of single atom catalysts (SACs), aided by a variety of synthetic methods, characterization techniques, and computational modeling. The distinct capabilities of SACs for oxidation, hydrogenation, and electrocatalytic reactions have led to the optimization of activity and selectivity through composition variation. However, characterization methods such as infrared and X‐ray spectroscopy are incapable of direct observations at atomic scale. Advances in transmission electron microscopy (TEM) including aberration correction, monochromators, environmental TEM, and micro‐electro‐mechanical system based in situ holders have improved catalysis study, allowing researchers to peer into regimes previously unavailable, observing critical structural and chemical information at atomic scale. This review presents recent development and applications of TEM techniques to garner information about the location, bonding characteristics, homogeneity, and stability of SACs. Aberration corrected TEM imaging routinely achieves sub‐Ångstrom resolution to reveal the atomic structure of materials. TEM spectroscopy provides complementary information about local composition, chemical bonding, electronic properties, and atomic/molecular vibration with superior spatial resolution. In situ/operando TEM directly observe the evolution of SACs under reaction conditions. This review concludes with remarks on the challenges and opportunities for further development of TEM to study SACs.

     
    more » « less
  4. Extreme ultraviolet (XUV) light sources based on high harmonic generation are enabling the development of novel spectroscopic methods to help advance the frontiers of ultrafast science and technology. In this account we discuss the development of XUV-RA spectroscopy at near grazing incident reflection geometry and highlight recent applications of this method to study ultrafast electron dynamics at surfaces. Measuring core-to-valence transitions with broadband, femtosecond pulses of XUV light extends the benefits of x-ray absorption spectroscopy to a laboratory tabletop by providing a chemical fingerprint of materials, including the ability to resolve individual elements with sensitivity to oxidation state, spin state, carrier polarity, and coordination geometry. Combining this chemical state sensitivity with femtosecond time resolution provides new insight into the material properties that govern charge carrier dynamics in complex materials. It is well known that surface dynamics differ significantly from equivalent processes in bulk materials, and that charge separation, trapping, transport, and recombination occurring uniquely at surfaces governs the efficiency of numerous technologically relevant processes spanning photocatalysis, photovoltaics, and information storage and processing. Importantly, XUV-RA spectroscopy at near grazing angle is also surface sensitive with a probe depth of 3 nm, providing a new window into electronic and structural dynamics at surfaces and interfaces. Here we highlight the unique capabilities and recent applications of XUVRA spectroscopy to study photo-induced surface dynamics in metal oxide semiconductors, including photocatalytic oxides (Fe2O3, Co3O4 NiO, and CuFeO2) as well as photoswitchable magnetic oxide (CoFe2O4). We first compare the ultrafast electron self-trapping rates via small polaron formation at the surface and bulk of Fe2O3 where we note that the energetics and kinetics of this process differ significantly at the surface. Additionally, we demonstrate the ability to systematically tune this kinetics by molecular functionalization, thereby, providing a route to control carrier transport at surfaces. We also measure the spectral signatures of charge transfer excitons with site specific localization of both electrons and holes in a series of transition metal oxide semiconductors (Fe2O3, NiO, Co3O4). The presence of valence band holes probed at the oxygen L1-edge confirms a direct relationship between the metal-oxygen bond covalency and water oxidation efficiency. For a mixed metal oxide CuFeO2 in the layered delafossite structure, XUV-RA reveals that the sub-picosecond hole thermalization from O 2p to Cu 3d states of CuFeO2 leads to the spatial separation of electrons and holes, resulting in exceptional photocatalytic performance for H2 evolution and CO2 reduction of this material. Finally, we provide an example to show the ability of XUV-RA to probe spin state specific dynamics in a the photo-switchable ferrimagnet, cobalt ferrite (CoFe2O4). This study provides a detailed understating of ultrafast spin switching in a complex magnetic material with site-specific resolution. In summary, the applications of XUV-RA spectroscopy demonstrated here illustrate the current abilities and future promise of this method to extend molecule-level understanding from well-defined photochemical complexes to complex materials so that charge and spin dynamics at surfaces can be tuned with the precision of molecular photochemistry. 
    more » « less
  5. Abstract Surface-bound reactions have become a viable method to develop nanoarchitectures through bottom-up assembly with near atomic precision. However, the bottom-up fabrication of nanostructures on surfaces requires careful consideration of the intrinsic properties of the precursors and substrate as well as the complex interplay of any interactions that arise in the heterogeneous two-dimensional (2D) system. Therefore, it becomes necessary to consider these systems with characterization methods sensitive to such properties with suitable spatial resolution. Here, low temperature ultrahigh vacuum scanning tunneling microscopy (STM) and tip-enhanced Raman spectroscopy (TERS) were used to investigate the formation of 2D covalent networks via coupling reactions of tetra(4-bromophenyl)porphyrin (Br 4 TPP) molecules on a Ag(100) substrate. Through the combination of STM topographic imaging and TERS vibrational fingerprints, the conformation of molecular precursors on the substrate was understood. Following the thermally activated coupling reaction, STM and TERS imaging confirm the covalent nature of the 2D networks and suggest that the apparent disorder arises from molecular flexibility. 
    more » « less