Atomic‐Scale Insights into the Interlayer Characteristics and Oxygen Reactivity of Bilayer Borophene
                        
                    
                    
                    
                    
                            Bilayer (BL) two-dimensional boron (i.e., borophene) emerges very recently and holds promise for fascinating physical properties and a variety of electronic applications. Despite this potential, the fundamental chemical properties of BL borophene which form the critical foundation of practical applications has been unexplored. Here, we present atomic-level chemical studies of BL borophene using ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS). UHV-TERS identifies the vibrational fingerprint of BL borophene from mixed-dimensional borophene polymorphs with angstrom-scale chemical spatial resolution. The observed Raman mode is directly correlated with the vibrations of interlayer boron-boron bonds, validating the three-dimensional lattice geometry of BL borophene. By virtue of the single-bond sensitivity of UHV-TERS to oxygen adatoms, we demonstrate the enhanced chemical stability of BL borophene compared to its monolayer counterpart by exposure to controlled oxidizing atmospheres under UHV. In addition to revealing fundamental chemical insights into BL borophene, this work establishes UHV-TERS as a powerful tool to probe interlayer bonding and chemical properties of layered materials at the atomic scale. 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
