skip to main content

Title: Electric vehicle charging stations in the workplace with high-resolution data from casual and habitual users

Problems of poor network interoperability in electric vehicle (EV) infrastructure, where data about real-time usage or consumption is not easily shared across service providers, has plagued the widespread analysis of energy used for transportation. In this article, we present a high-resolution dataset of real-time EV charging transactions resolved to the nearest second over a one-year period at a multi-site corporate campus. This includes 105 charging stations across 25 different facilities operated by a single firm in the U.S. Department of Energy Workplace Charging Challenge. The high-resolution data has 3,395 real-time transactions and 85 users with both paid and free sessions. The data has been expanded for re-use such as identifying charging behaviour and segmenting user groups by frequency of usage, stage of adoption, and employee type. Potential applications include but are not limited to simulating and parameterizing energy demand models; investigating flexible charge scheduling and optimal power flow problems; characterizing transportation emissions and electric mobility patterns at high temporal resolution; and evaluating characteristics of early adopters and lead user innovation.

more » « less
Award ID(s):
1945332 1931980
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset contains information from 3,395 high resolution electric vehicle charging sessions as presented in "Electric vehicle charging stations in the workplace: high-resolution data from casual and habitual users ", including indicator variables for user types based on time of adoption, total sessions logged, and position held within the firm. The data contains sessions from 85 EV drivers with repeat usage at 105 stations across 25 sites at a workplace charging program. The workplace locations include facilities such as research and innovation centers, manufacturing, testing facilities and office headquarters for a firm participating in the U.S. Department of Energy (DOE) workplace charging challenge. The data is in a human and machine readable *.CSV format. The resolution of the data is to the nearest second, which is the same resolution as used in the analysis of the paper. It is directly importable into free software. 
    more » « less
  2. Mobile applications have become widely popular for their ability to access real-time information. In electric vehicle (EV) mobility, these applications are used by drivers to locate charging stations in public spaces, pay for charging transactions, and engage with other users. This activity generates a rich source of data about charging infrastructure and behavior. However, an increasing share of this data is stored as unstructured text—inhibiting our ability to interpret behavior in real-time. In this article, we implement recent transformer-based deep learning algorithms, BERT and XLnet, that have been tailored to automatically classify short user reviews about EV charging experiences. We achieve classification results with a mean accuracy of over 91% and a mean F1 score of over 0.81 allowing for more precise detection of topic categories, even in the presence of highly imbalanced data. Using these classification algorithms as a pre-processing step, we analyze a U.S. national dataset with econometric methods to discover the dominant topics of discourse in charging infrastructure. After adjusting for station characteristics and other factors, we find that the functionality of a charging station is the dominant topic among EV drivers and is more likely to be discussed at points-of-interest with negative user experiences. 
    more » « less
  3. We are witnessing a rapid growth of electrified vehicles due to the ever-increasing concerns on urban air quality and energy security. Compared to other types of electric vehicles, electric buses have not yet been prevailingly adopted worldwide due to their high owning and operating costs, long charging time, and the uneven spatial distribution of charging facilities. Moreover, the highly dynamic environment factors such as unpredictable traffic congestion, different passenger demands, and even the changing weather can significantly affect electric bus charging efficiency and potentially hinder the further promotion of large-scale electric bus fleets. To address these issues, in this article, we first analyze a real-world dataset including massive data from 16,359 electric buses, 1,400 bus lines, and 5,562 bus stops. Then, we investigate the electric bus network to understand its operating and charging patterns, and further verify the necessity and feasibility of a real-time charging scheduling. With such understanding, we design busCharging , a pricing-aware real-time charging scheduling system based on Markov Decision Process to reduce the overall charging and operating costs for city-scale electric bus fleets, taking the time-variant electricity pricing into account. To show the effectiveness of busCharging , we implement it with the real-world data from Shenzhen, which includes GPS data of electric buses, the metadata of all bus lines and bus stops, combined with data of 376 charging stations for electric buses. The evaluation results show that busCharging dramatically reduces the charging cost by 23.7% and 12.8% of electricity usage simultaneously. Finally, we design a scheduling-based charging station expansion strategy to verify our busCharging is also effective during the charging station expansion process. 
    more » « less
  4. Abstract

    Vehicle electrification is a common climate change mitigation strategy, with policymakers invoking co‐beneficial reductions in carbon dioxide (CO2) and air pollutant emissions. However, while previous studies of U.S. electric vehicle (EV) adoption consistently predict CO2mitigation benefits, air quality outcomes are equivocal and depend on policies assessed and experimental parameters. We analyze climate and health co‐benefits and trade‐offs of six U.S. EV adoption scenarios: 25% or 75% replacement of conventional internal combustion engine vehicles, each under three different EV‐charging energy generation scenarios. We transfer emissions from tailpipe to power generation plant, simulate interactions of atmospheric chemistry and meteorology using the GFDL‐AM4 chemistry climate model, and assess health consequences and uncertainties using the U.S. Environmental Protection Agency Benefits Mapping Analysis Program Community Edition (BenMAP‐CE). We find that 25% U.S. EV adoption, with added energy demand sourced from the present‐day electric grid, annually results in a ~242 M ton reduction in CO2emissions, 437 deaths avoided due to PM2.5reductions (95% CI: 295, 578), and 98 deaths avoided due to lesser ozone formation (95% CI: 33, 162). Despite some regions experiencing adverse health outcomes, ~$16.8B in damages avoided are predicted. Peak CO2reductions and health benefits occur with 75% EV adoption and increased emission‐free energy sources (~$70B in damages avoided). When charging‐electricity from aggressive EV adoption is combustion‐only, adverse health outcomes increase substantially, highlighting the importance of low‐to‐zero emission power generation for greater realization of health co‐benefits. Our results provide a more nuanced understanding of the transportation sector's climate change mitigation‐health impact relationship.

    more » « less
  5. Abstract

    Electric vehicle (EV) charging infrastructure buildout is a major greenhouse gas (GHG) mitigation strategy among governments and municipalities. In the United States, where petroleum-based transportation is the largest single source of GHG emissions, the Infrastructure Investment and Jobs Act of 2021 will support building a national network of 500 000 EV charging units. While the climate benefits of driving electric are well established, the potential embodied climate impacts of building out the charging infrastructure are relatively unexplored. Furthermore, ‘charging infrastructure’ tends to be conceptualized in terms of plugs and stations, leaving out the electrical and communications systems that will be required to support decarbonized and efficient charging. In this study, we present an EV charging system (EVCS) model that describes the material and operational components required for charging and forecasts the scale-up of these components based on EV market share scenarios out to 2050. We develop a methodology for measuring GHG emissions embodied in the buildout of EVCS and incurred during operation of the EVCS, including vehicle recharging, and we demonstrate this model using a case study of Georgia (USA). We find that cumulative GHG emissions from EVCS buildout and use are negligible, at less than 1% of cumulative emissions from personal light duty vehicle travel (including EV recharging and conventional combustion vehicle driving). If an accelerated EVCS buildout were to stimulate a faster transition of the vehicle fleet, the emissions reduction of electrification will far outweigh emissions embodied in EVCS components, even assuming relatively high carbon inputs prior to decarbonization.

    more » « less