Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2025
-
Free, publicly-accessible full text available January 1, 2025
-
Free, publicly-accessible full text available December 1, 2024
-
Camps-Valls, G. ; Ruiz, F. J. ; Valera, I. (Ed.)Knowing when a graphical model perfectly encodes the conditional independence structure of a distribution is essential in applications, and this is particularly important when performing inference from data. When the model is perfect, there is a one-to-one correspondence between conditional independence statements in the distribution and separation statements in the graph. Previous work has shown that almost all models based on linear directed acyclic graphs as well as Gaussian chain graphs are perfect, the latter of which subsumes Gaussian graphical models (i.e., the undirected Gaussian models) as a special case. In this paper, we directly approach the problem of perfectness for the Gaussian graphical models, and provide a new proof, via a more transparent parametrization, that almost all such models are perfect. Our approach is based on, and substantially extends, a construction of Lněnička and Matúš showing the existence of a perfect Gaussian distribution for any graph. The analysis involves constructing a probability measure on the set of normalized covariance matrices Markov with respect to a graph that may be of independent interest.more » « less
-
Ranzato, M. ; Beygelzimer, A. ; Dauphin, Y. ; Liang, P.S. ; Vaughan, J. W. (Ed.)We provide theoretical guarantees for label consistency in generalized k-means problems, with an emphasis on the overfitted case where the number of clusters used by the algorithm is more than the ground truth. We provide conditions under which the estimated labels are close to a refinement of the true cluster labels. We consider both exact and approximate recovery of the labels. Our results hold for any constant-factor approximation to the k-means problem. The results are also model-free and only based on bounds on the maximum or average distance of the data points to the true cluster centers. These centers themselves are loosely defined and can be taken to be any set of points for which the aforementioned distances can be controlled. We show the usefulness of the results with applications to some manifold clustering problems.more » « less
-
Larochelle, H. ; Ranzato, M. ; Hadsell, R. ; Balcan, M.F. ; Lin, H. (Ed.)