skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1949896

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The affine matrix-ball construction (abbreviated AMBC) was developed by Chmutov, Lewis, Pylyavskyy, and Yudovina as an affine generalization of the Robinson–Schensted correspondence. We show that AMBC gives a simple way to compute a distinguished involution in each Kazhdan–Lusztig cell of an affine symmetric group. We then use AMBC to give the 1st known canonical presentation for the asymptotic Hecke algebras of extended affine symmetric groups. As an application, we show that AMBC gives a conceptual way to compute the Lusztig–Vogan bijection. For the latter, we build upon prior works of Achar and Rush. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)