skip to main content

Search for: All records

Award ID contains: 1952199

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The relative importance of radiative feedbacks and emissions scenarios in controlling surface warming patterns is challenging to quantify across model generations. We analyze three variants of the Community Earth System Model (CESM) with differing equilibrium climate sensitivities under identical CMIP5 historical and high‐emissions scenarios. CESM1, our base model, exhibits Arctic‐amplified warming with the least warming in the Southern Hemisphere middle latitudes. A variant of CESM1 with enhanced extratropical shortwave cloud feedbacks shows slightly increased late‐21st century warming at all latitudes. In the next‐generation model, CESM2, global‐mean warming is also slightly greater, but the warming is zonally redistributed in a pattern mirroring cloud and surface albedo feedbacks. However, if the nominally equivalent CMIP6 scenario is applied to CESM2, the redistributed warming pattern is preserved, but global‐mean warming is significantly greater. These results demonstrate how model structural differences and scenario differences combine to produce differences in climate projections across model generations.

    more » « less
  2. Abstract

    The Antarctic ice sheet (AIS) is sensitive to short‐term extreme meteorological events that can leave long‐term impacts on the continent's surface mass balance (SMB). We investigate the impacts of atmospheric rivers (ARs) on the AIS precipitation budget using an AR detection algorithm and a regional climate model (Modèle Atmosphérique Régional) from 1980 to 2018. While ARs and their associated extreme vapor transport are relatively rare events over Antarctic coastal regions (∼3 days per year), they have a significant impact on the precipitation climatology. ARs are responsible for at least 10% of total accumulated snowfall across East Antarctica (localized areas reaching 20%) and a majority of extreme precipitation events. Trends in AR annual frequency since 1980 are observed across parts of AIS, most notably an increasing trend in Dronning Maud Land; however, interannual variability in AR frequency is much larger. This AR behavior appears to drive a significant portion of annual snowfall trends across East Antarctica, while controlling the interannual variability of precipitation across most of the AIS. AR landfalls are most likely when the circumpolar jet is highly amplified during blocking conditions in the Southern Ocean. There is a fingerprint of the Southern Annular Mode (SAM) on AR variability in West Antarctica with SAM+ (SAM−) favoring increased AR frequency in the Antarctic Peninsula (Amundsen‐Ross Sea coastline). Given the relatively large influence ARs have on precipitation across the continent, it is advantageous for future studies of moisture transport to Antarctica to consider an AR framework especially when considering future SMB changes.

    more » « less
  3. Abstract. Ocean-driven ice loss from the West Antarctic Ice Sheet is asignificant contributor to sea-level rise. Recent ocean variability in theAmundsen Sea is controlled by near-surface winds. We combine palaeoclimatereconstructions and climate model simulations to understand past and futureinfluences on Amundsen Sea winds from anthropogenic forcing and internalclimate variability. The reconstructions show strong historical wind trends.External forcing from greenhouse gases and stratospheric ozone depletiondrove zonally uniform westerly wind trends centred over the deep SouthernOcean. Internally generated trends resemble a South Pacific Rossby wavetrain and were highly influential over the Amundsen Sea continental shelf.There was strong interannual and interdecadal variability over the AmundsenSea, with periods of anticyclonic wind anomalies in the 1940s and 1990s,when rapid ice-sheet loss was initiated. Similar anticyclonic anomaliesprobably occurred prior to the 20th century but without causing the presentice loss. This suggests that ice loss may have been triggered naturally inthe 1940s but failed to recover subsequently due to the increasingimportance of anthropogenic forcing from greenhouse gases (since the 1960s)and ozone depletion (since the 1980s). Future projections also featurestrong wind trends. Emissions mitigation influences wind trends over thedeep Southern Ocean but has less influence on winds over the Amundsen Seashelf, where internal variability creates a large and irreducibleuncertainty. This suggests that strong emissions mitigation is needed tominimise ice loss this century but that the uncontrollable future influenceof internal climate variability could be equally important. 
    more » « less
  4. null (Ed.)
    Abstract Over the last century, the increase in snow accumulation has partly mitigated the total dynamic Antarctic Ice Sheet mass loss. However, the mechanisms behind this increase are poorly understood. Here we analyze the Antarctic Ice Sheet atmospheric moisture budget based on climate reanalysis and model simulations to reveal that the interannual variability of regional snow accumulation is controlled by both the large-scale atmospheric circulation and short-lived synoptic-scale events (i.e. storm systems). Yet, when considering the entire continent at the multi-decadal scale, only the synoptic-scale events can explain the recent and expected future snow accumulation increase. In a warmer climate induced by climate change, these synoptic-scale events transport air that can contain more humidity due to the increasing temperatures leading to more precipitation on the continent. Our findings highlight that the multi-decadal and interannual snow accumulation variability is governed by different processes, and that we thus cannot rely directly on the mechanisms driving interannual variations to predict long-term changes in snow accumulation in the future. 
    more » « less