skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Contribution of Atmospheric Rivers to Antarctic Precipitation
Abstract Atmospheric rivers (ARs) are efficient mechanisms for transporting atmospheric moisture from low latitudes to the Antarctic Ice Sheet (AIS). While AR events occur infrequently, they can lead to extreme precipitation and surface melt events on the AIS. Here we estimate the contribution of ARs to total Antarctic precipitation, by combining precipitation from atmospheric reanalyses and a polar‐specific AR detection algorithm. We show that ARs contribute substantially to Antarctic precipitation, especially in East Antarctica at elevations below 3,000 m. ARs contribute substantially to year‐to‐year variability in Antarctic precipitation. Our results highlight that ARs are an important component for understanding present and future Antarctic mass balance trends and variability.  more » « less
Award ID(s):
1929991 1952199
PAR ID:
10443984
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
18
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Antarctic ice sheet (AIS) is sensitive to short‐term extreme meteorological events that can leave long‐term impacts on the continent's surface mass balance (SMB). We investigate the impacts of atmospheric rivers (ARs) on the AIS precipitation budget using an AR detection algorithm and a regional climate model (Modèle Atmosphérique Régional) from 1980 to 2018. While ARs and their associated extreme vapor transport are relatively rare events over Antarctic coastal regions (∼3 days per year), they have a significant impact on the precipitation climatology. ARs are responsible for at least 10% of total accumulated snowfall across East Antarctica (localized areas reaching 20%) and a majority of extreme precipitation events. Trends in AR annual frequency since 1980 are observed across parts of AIS, most notably an increasing trend in Dronning Maud Land; however, interannual variability in AR frequency is much larger. This AR behavior appears to drive a significant portion of annual snowfall trends across East Antarctica, while controlling the interannual variability of precipitation across most of the AIS. AR landfalls are most likely when the circumpolar jet is highly amplified during blocking conditions in the Southern Ocean. There is a fingerprint of the Southern Annular Mode (SAM) on AR variability in West Antarctica with SAM+ (SAM−) favoring increased AR frequency in the Antarctic Peninsula (Amundsen‐Ross Sea coastline). Given the relatively large influence ARs have on precipitation across the continent, it is advantageous for future studies of moisture transport to Antarctica to consider an AR framework especially when considering future SMB changes. 
    more » « less
  2. Abstract Atmospheric rivers (ARs) manifest as transient filaments of intense water vapor transport that contribute to synoptic‐scale extremes and interannual variability of precipitation. Despite these influences, the synoptic‐ to planetary‐scale processes that lead to ARs remain inadequately understood. In this study, North Pacific ARs within the November–April season are objectively identified in both reanalysis data and the Community Earth System Model Version 2, and atmospheric patterns preceding AR landfalls beyond 1 week in advance are examined. Latitudinal dependence of the AR processes is investigated by sampling events near the Oregon (45°N, 230°E) and southern California (35°N, 230°E) coasts. Oregon ARs exhibit a pronounced anticyclone emerging over Alaska 1–2 weeks before AR landfall that migrates westward into Siberia, dual midlatitude cyclones developing over southeast coastal Asia and the northeast Pacific, and a zonally elongated band of enhanced water vapor transport spanning the entire North Pacific basin that guides anomalous moisture toward the North American west coast. The precursor high‐latitude anticyclone corresponds to a significant increase in atmospheric blocking probability, suppressed synoptic eddy activity, and an equatorward‐shifted storm track. Southern California ARs also exhibit high‐latitude blocking but have an earlier‐developing and more intense northeast Pacific cyclone. Compared to reanalysis, Community Earth System Model Version 2 underestimates Northeast Pacific AR frequencies by 5–20% but generally captures AR precursor patterns well, particularly for Oregon ARs. Collectively, these results indicate that the identified precursor patterns represent physical processes that are central to ARs and are not simply an artifact of statistical analysis. 
    more » « less
  3. This dataset contains the atmospheric river catalogues and the associated precipitation and temperature data for the Preindustrial and Last Glacial Maximum CESM2 simulations presented in the GRL manuscript:  Atmospheric river contributions to ice sheet hydro climate at the Last Glacial Maximum. The atmospheric river catalogue files (zipped) are in netcdf format and organized by year. There are 100 years of data for both simulations.  The Preindustrial simulation catalogue begins in model year 41 and ends in model year 140.  The LGM simulation catalogue begins in model year 1 and ends in year 100. Each yearly file has a temporal resolution of 6 hours (1460 time steps each file) and a spatial resolution of 0.9° x 1.25° (the native resolution of the CESM simulation). A variable in the file called "ar_binary_tag" indicates whether an atmospheric river is present at each grid cell and each tilmestep: 1 indicates an atmospheric river is present; 0 indicates an atmospheric river is not present.  The precipitation and temperature files are 100-year annual or 100-year seasonal averages of atmospheric river precipitation/temperature. See the Methods section of the article for more details on the atmospheric river detection algorithm and precipitation/temperature calculations. Associated article abstract: Atmospheric rivers (ARs) are an important driver of surface mass balance over today’s Greenland and Antarctic ice sheets. Using paleoclimate simulations with the Community Earth System Model, we find ARs also had a key influence on the extensive ice sheets of the Last Glacial Maximum (LGM). ARs provide up to 53% of total precipitation along the margins of the eastern Laurentide ice sheet and up to 22-27% of precipitation along the margins of the Patagonian, western Cordilleran, and western Fennoscandian ice sheets. Despite overall cold conditions at the LGM, surface temperatures during AR events are often above freezing, resulting in more rain than snow along ice sheet margins and conditions that promote surface melt. The results suggest  ARs may have had an important role in ice sheet growth and melt during previous glacial periods and may have accelerated ice sheet retreat following the LGM. 
    more » « less
  4. Abstract Atmospheric rivers (ARs) are an important driver of surface mass balance over today's Greenland and Antarctic ice sheets. Using paleoclimate simulations with the Community Earth System Model, we find ARs also had a key influence on the extensive ice sheets of the Last Glacial Maximum (LGM). ARs provide up to 53% of total precipitation along the margins of the eastern Laurentide ice sheet and up to 22%–27% of precipitation along the margins of the Patagonian, western Cordilleran, and western Fennoscandian ice sheets. Despite overall cold conditions at the LGM, surface temperatures during AR events are often above freezing, resulting in more rain than snow along ice sheet margins and conditions that promote surface melt. The results suggest ARs may have had an important role in ice sheet growth and melt during previous glacial periods and may have accelerated ice sheet retreat following the LGM. 
    more » « less
  5. Abstract. Atmospheric rivers (ARs) transport large amounts of moisture from the mid- to high-latitudes and they are a primary driver of the most extremesnowfall events, along with surface melting, in Antarctica. In this study, we characterize the climatology and surface impacts of ARs on WestAntarctica, focusing on the Amundsen Sea Embayment and Marie Byrd Land. First, we develop a climatology of ARs in this region, using anAntarctic-specific AR detection tool combined with theModern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) and the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) atmospheric reanalyses. We find that while ARs are infrequent (occurring 3 % of the time), they cause intense precipitation in short periods of time and account for 11 % of the annual surface accumulation. They are driven by the coupling of a blocking high over the Antarctic Peninsula with a low-pressure system known as the Amundsen Sea Low. Next, we use observations from automatic weather stations on Thwaites Eastern Ice Shelf with the firn model SNOWPACK and interferometric reflectometry (IR) to examine a case study of three ARs that made landfall in rapid succession from 2 to 8 February 2020, known as an AR family event. While accumulation dominates the surface impacts of the event on Thwaites Eastern Ice Shelf (> 100 kg m−2 or millimeters water equivalent), we find small amounts of surface melt as well (< 5 kg m−2). The results presented here enable us to quantify the past impacts of ARs on West Antarctica's surface mass balance (SMB) and characterize their interannual variability and trends, enabling a better assessment of future AR-driven changes in the SMB. 
    more » « less