skip to main content


Search for: All records

Award ID contains: 1952676

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bose, Arpita (Ed.)
    ABSTRACT <p>Using dissolved inorganic carbon (DIC) as a major carbon source, as autotrophs do, is complicated by the bedeviling nature of this substance. Autotrophs using the Calvin-Benson-Bassham cycle (CBB) are known to make use of a toolkit comprised of DIC transporters and carbonic anhydrase enzymes (CA) to facilitate DIC fixation. This minireview provides a brief overview of the current understanding of how toolkit function facilitates DIC fixation in<italic>Cyanobacteria</italic>and some<italic>Proteobacteria</italic>using the CBB and continues with a survey of the DIC toolkit gene presence in organisms using different versions of the CBB and other autotrophic pathways (reductive citric acid cycle, Wood-Ljungdahl pathway, hydroxypropionate bicycle, hydroxypropionate-hydroxybutyrate cycle, and dicarboxylate-hydroxybutyrate cycle). The potential function of toolkit gene products in these organisms is discussed in terms of CO<sub>2</sub>and HCO<sub>3</sub><sup>−</sup>supply from the environment and demand by the autotrophic pathway. The presence of DIC toolkit genes in autotrophic organisms beyond those using the CBB suggests the relevance of DIC metabolism to these organisms and provides a basis for better engineering of these organisms for industrial and agricultural purposes.</p></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> Free, publicly-accessible full text available February 21, 2025</span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10373802-atypical-carboxysome-loci-jeeps-junk" itemprop="url"> <span class='span-link' itemprop="name">Atypical Carboxysome Loci: JEEPs or Junk?</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.3389/fmicb.2022.872708" target="_blank" title="Link to document DOI">https://doi.org/10.3389/fmicb.2022.872708  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Sutter, Markus</span> <span class="sep">; </span><span class="author" itemprop="author">Kerfeld, Cheryl A.</span> <span class="sep">; </span><span class="author" itemprop="author">Scott, Kathleen M.</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2022-05-20">May 2022</time> , Frontiers in Microbiology) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> Carboxysomes, responsible for a substantial fraction of CO 2 fixation on Earth, are proteinaceous microcompartments found in many autotrophic members of domain Bacteria , primarily from the phyla Proteobacteria and Cyanobacteria . Carboxysomes facilitate CO 2 fixation by the Calvin-Benson-Bassham (CBB) cycle, particularly under conditions where the CO 2 concentration is variable or low, or O 2 is abundant. These microcompartments are composed of an icosahedral shell containing the enzymes ribulose 1,5-carboxylase/oxygenase (RubisCO) and carbonic anhydrase. They function as part of a CO 2 concentrating mechanism, in which cells accumulate HCO 3 − in the cytoplasm via active transport, HCO 3 − enters the carboxysomes through pores in the carboxysomal shell proteins, and carboxysomal carbonic anhydrase facilitates the conversion of HCO 3 − to CO 2 , which RubisCO fixes. Two forms of carboxysomes have been described: α-carboxysomes and β-carboxysomes, which arose independently from ancestral microcompartments. The α-carboxysomes present in Proteobacteria and some Cyanobacteria have shells comprised of four types of proteins [CsoS1 hexamers, CsoS4 pentamers, CsoS2 assembly proteins, and α-carboxysomal carbonic anhydrase (CsoSCA)], and contain form IA RubisCO (CbbL and CbbS). In the majority of cases, these components are encoded in the genome near each other in a gene locus, and transcribed together as an operon. Interestingly, genome sequencing has revealed some α-carboxysome loci that are missing genes encoding one or more of these components. Some loci lack the genes encoding RubisCO, others lack a gene encoding carbonic anhydrase, some loci are missing shell protein genes, and in some organisms, genes homologous to those encoding the carboxysome-associated carbonic anhydrase are the only carboxysome-related genes present in the genome. Given that RubisCO, assembly factors, carbonic anhydrase, and shell proteins are all essential for carboxysome function, these absences are quite intriguing. In this review, we provide an overview of the most recent studies of the structural components of carboxysomes, describe the genomic context and taxonomic distribution of atypical carboxysome loci, and propose functions for these variants. We suggest that these atypical loci are JEEPs, which have modified functions based on the presence of Just Enough Essential Parts. </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> <a class="misc external-link" href="https://doi.org/10.3389/fmicb.2022.872708" target="_blank" title="Link to document DOI" data-ostiid="10373802"> Full Text Available <span class="fas fa-external-link-alt"></span> </a> </span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10373803-thiomicrorhabdus-heinhorstiae-sp-nov-thiomicrorhabdus-cannonii-sp-nov-novel-sulphur-oxidizing-chemolithoautotrophs-isolated-from-chemocline-hospital-hole-anchialine-sinkhole-spring-hill-florida-usa" itemprop="url"> <span class='span-link' itemprop="name">Thiomicrorhabdus heinhorstiae sp. nov. and Thiomicrorhabdus cannonii sp. nov.: novel sulphur-oxidizing chemolithoautotrophs isolated from the chemocline of Hospital Hole, an anchialine sinkhole in Spring Hill, Florida, USA</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1099/ijsem.0.005233" target="_blank" title="Link to document DOI">https://doi.org/10.1099/ijsem.0.005233  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Updegraff, Tatum</span> <span class="sep">; </span><span class="author" itemprop="author">Schiff-Clark, Grayson</span> <span class="sep">; </span><span class="author" itemprop="author">Gossett, Hunter</span> <span class="sep">; </span><span class="author" itemprop="author">Parsi, Sheila</span> <span class="sep">; </span><span class="author" itemprop="author">Peterson, Rebecca</span> <span class="sep">; </span><span class="author" itemprop="author">Whittaker, Robert</span> <span class="sep">; </span><span class="author" itemprop="author">Dennison, Clare</span> <span class="sep">; </span><span class="author" itemprop="author">Davis, Madison</span> <span class="sep">; </span><span class="author" itemprop="author">Bray, James</span> <span class="sep">; </span><span class="author" itemprop="author">Boden, Rich</span> <span class="sep">; </span><span class="author">et al</span></span> <span class="year">( <time itemprop="datePublished" datetime="2022-03-11">March 2022</time> , International Journal of Systematic and Evolutionary Microbiology) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> Two sulphur-oxidizing, chemolithoautotrophic aerobes were isolated from the chemocline of an anchialine sinkhole located within the Weeki Wachee River of Florida. Gram-stain-negative cells of both strains were motile, chemotactic rods. Phylogenetic analysis of the 16S rRNA gene and predicted amino acid sequences of ribosomal proteins, average nucleotide identities, and alignment fractions suggest the strains HH1 T and HH3 T represent novel species belonging to the genus Thiomicrorhabdus . The genome G+C fraction of HH1 T is 47.8 mol% with a genome length of 2.61 Mb, whereas HH3 T has a G+C fraction of 52.4 mol% and 2.49 Mb genome length. Major fatty acids of the two strains included C 16 : 1 , C 18 : 1 and C 16 : 0 , with the addition of C 10:0 3-OH in HH1 T and C 12 : 0 in HH3 T . Chemolithoautotrophic growth of both strains was supported by elemental sulphur, sulphide, tetrathionate, and thiosulphate, and HH1 T was also able to use molecular hydrogen. Neither strain was capable of heterotrophic growth or use of nitrate as a terminal electron acceptor. Strain HH1 T grew from pH 6.5 to 8.5, with an optimum of pH 7.4, whereas strain HH3 T grew from pH 6 to 8 with an optimum of pH 7.5. Growth was observed between 15–35 °C with optima of 32.8 °C for HH1 T and 32 °C for HH3 T . HH1 T grew in media with [NaCl] 80–689 mM, with an optimum of 400 mM, while HH3 T grew at 80–517 mM, with an optimum of 80 mM. The name Thiomicrorhabdus heinhorstiae sp. nov. is proposed, and the type strain is HH1 T (=DSM 111584 T =ATCC TSD-240 T ). The name Thiomicrorhabdus cannonii sp. nov is proposed, and the type strain is HH3 T (=DSM 111593 T =ATCC TSD-241 T ). </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> <a class="misc external-link" href="https://doi.org/10.1099/ijsem.0.005233" target="_blank" title="Link to document DOI" data-ostiid="10373803"> Full Text Available <span class="fas fa-external-link-alt"></span> </a> </span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10300375-dissolved-inorganic-carbon-accumulating-complexes-from-autotrophic-bacteria-from-extreme-environments" itemprop="url"> <span class='span-link' itemprop="name">Dissolved inorganic carbon accumulating complexes from autotrophic bacteria from extreme environments</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1128/JB.00377-21" target="_blank" title="Link to document DOI">https://doi.org/10.1128/JB.00377-21  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Schmid, Sarah</span> <span class="sep">; </span><span class="author" itemprop="author">Chaput, Dale</span> <span class="sep">; </span><span class="author" itemprop="author">Breitbart, Mya</span> <span class="sep">; </span><span class="author" itemprop="author">Hines, Rebecca</span> <span class="sep">; </span><span class="author" itemprop="author">Williams, Samantha</span> <span class="sep">; </span><span class="author" itemprop="author">Gossett, Hunter K.</span> <span class="sep">; </span><span class="author" itemprop="author">Parsi, Sheila D.</span> <span class="sep">; </span><span class="author" itemprop="author">Peterson, Rebecca</span> <span class="sep">; </span><span class="author" itemprop="author">Whittaker, Robert A.</span> <span class="sep">; </span><span class="author" itemprop="author">Tarver, Angela</span> <span class="sep">; </span><span class="author">et al</span></span> <span class="year">( <time itemprop="datePublished" datetime="2021-09-20">September 2021</time> , Journal of Bacteriology) </span> </div> <span class="editors"> <span class="editor" itemprop="editor">null</span> (Ed.) </span> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> In nature, concentrations of dissolved inorganic carbon (DIC; = CO 2 + HCO 3 - + CO 3 2- ) can be low, and autotrophic organisms adapt with a variety of mechanisms to elevate intracellular DIC concentrations to enhance CO 2 fixation. Such mechanisms have been well-studied in Cyanobacteria , but much remains to be learned about their activity in other phyla. Novel multi-subunit membrane-spanning complexes capable of elevating intracellular DIC were recently described in three species of bacteria. Homologs of these complexes are distributed among 17 phyla in Bacteria and Archaea, and are predicted to consist of one, two, or three subunits. To determine whether DIC accumulation is a shared feature of these diverse complexes, seven of them, representative of organisms from four phyla, from a variety of habitats, and with three different subunit configurations were chosen for study. A high-CO 2 requiring, carbonic anhydrase-deficient ( yadF - cynT - ) strain of E. coli Lemo21(DE3), which could be rescued via elevated intracellular DIC concentrations, was created for heterologous expression and characterization of the complexes. Expression of all seven complexes rescued the ability of E. coli Lemo21(DE3) yadF - cynT - to grow under low CO 2 conditions, and six of the seven generated measurably elevated intracellular DIC concentrations when their expression was induced. For complexes consisting of two or three subunits, all subunits were necessary for DIC accumulation. Isotopic disequilibrium experiments clarified that CO 2 was the substrate for these complexes. In addition, the presence of an ionophore prevented the accumulation of intracellular DIC, suggesting that these complexes may couple proton potential to DIC accumulation. IMPORTANCE To facilitate the synthesis of biomass from CO 2 , autotrophic organisms use a variety of mechanisms to increase intracellular DIC concentrations. A novel type of multi-subunit complex has recently been described, which has been shown to generate measurably elevated intracellular DIC concentrations in three species of bacteria, begging the question of whether these complexes share this capability across the 17 phyla of Bacteria and Archaea where they are found. This study shows that DIC accumulation is a trait shared by complexes with varied subunit structures, from organisms with diverse physiologies and taxonomies, suggesting that this trait is universal among them. Successful expression in E. coli suggests the possibility of their expression in engineered organisms synthesizing compounds of industrial importance from CO 2 . </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> <a class="misc external-link" href="https://doi.org/10.1128/JB.00377-21" target="_blank" title="Link to document DOI" data-ostiid="10300375"> Full Text Available <span class="fas fa-external-link-alt"></span> </a> </span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10300376-cooccurring-activities-two-autotrophic-pathways-symbionts-hydrothermal-vent-tubeworm-riftia-pachyptila" itemprop="url"> <span class='span-link' itemprop="name">Cooccurring Activities of Two Autotrophic Pathways in Symbionts of the Hydrothermal Vent Tubeworm Riftia pachyptila</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1128/AEM.00794-21" target="_blank" title="Link to document DOI">https://doi.org/10.1128/AEM.00794-21  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Leonard, Juliana M.</span> <span class="sep">; </span><span class="author" itemprop="author">Mitchell, Jessica</span> <span class="sep">; </span><span class="author" itemprop="author">Beinart, Roxanne A.</span> <span class="sep">; </span><span class="author" itemprop="author">Delaney, Jennifer A.</span> <span class="sep">; </span><span class="author" itemprop="author">Sanders, Jon G.</span> <span class="sep">; </span><span class="author" itemprop="author">Ellis, Greg</span> <span class="sep">; </span><span class="author" itemprop="author">Goddard, Ethan A.</span> <span class="sep">; </span><span class="author" itemprop="author">Girguis, Peter R.</span> <span class="sep">; </span><span class="author" itemprop="author">Scott, Kathleen M.</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2021-08-11">August 2021</time> , Applied and Environmental Microbiology) </span> </div> <span class="editors"> <span class="editor" itemprop="editor">Atomi, Haruyuki</span> (Ed.) </span> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> ABSTRACT Genome and proteome data predict the presence of both the reductive citric acid cycle (rCAC; also called the reductive tricarboxylic acid cycle) and the Calvin-Benson-Bassham cycle (CBB) in “ Candidatus Endoriftia persephonae,” the autotrophic sulfur-oxidizing bacterial endosymbiont from the giant hydrothermal vent tubeworm Riftia pachyptila . We tested whether these cycles were differentially induced by sulfide supply, since the synthesis of biosynthetic intermediates by the rCAC is less energetically expensive than that by the CBB. R. pachyptila was incubated under in situ conditions in high-pressure aquaria under low (28 to 40 μmol · h −1 ) or high (180 to 276 μmol · h −1 ) rates of sulfide supply. Symbiont-bearing trophosome samples excised from R. pachyptila maintained under the two conditions were capable of similar rates of CO 2 fixation. Activities of the rCAC enzyme ATP-dependent citrate lyase (ACL) and the CBB enzyme 1,3-bisphosphate carboxylase/oxygenase (RubisCO) did not differ between the two conditions, although transcript abundances for ATP-dependent citrate lyase were 4- to 5-fold higher under low-sulfide conditions. δ 13 C values of internal dissolved inorganic carbon (DIC) pools were varied and did not correlate with sulfide supply rate. In samples taken from freshly collected R. pachyptila , δ 13 C values of lipids fell between those collected for organisms using either the rCAC or the CBB exclusively. These observations are consistent with cooccurring activities of the rCAC and the CBB in this symbiosis. IMPORTANCE Previous to this study, the activities of the rCAC and CBB in R. pachyptila had largely been inferred from “omics” studies of R. pachyptila without direct assessment of in situ conditions prior to collection. In this study, R. pachyptila was maintained and monitored in high-pressure aquaria prior to measuring its CO 2 fixation parameters. Results suggest that ranges in sulfide concentrations similar to those experienced in situ do not exert a strong influence on the relative activities of the rCAC and the CBB. This observation highlights the importance of further study of this symbiosis and other organisms with multiple CO 2 -fixing pathways, which recent genomics and biochemical studies suggest are likely to be more prevalent than anticipated. </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> <a class="misc external-link" href="https://doi.org/10.1128/AEM.00794-21" target="_blank" title="Link to document DOI" data-ostiid="10300376"> Full Text Available <span class="fas fa-external-link-alt"></span> </a> </span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10300377-classroom-undergraduate-research-experiences-cure-increases-engagement-students-teachers" itemprop="url"> <span class='span-link' itemprop="name">Classroom undergraduate research experiences are a “CURE” that increases engagement by students and teachers</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1093/femsle/fnab036" target="_blank" title="Link to document DOI">https://doi.org/10.1093/femsle/fnab036  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Scott, Kathleen M</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2021-03-01">March 2021</time> , FEMS Microbiology Letters) </span> </div> <span class="editors"> <span class="editor" itemprop="editor">null</span> (Ed.) </span> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> ABSTRACT It is widely acknowledged that having experience conducting research is invaluable for undergraduate science students. Most undergraduate research is undertaken by students in a mentor's laboratory, but this limits the number of opportunities for students, as each laboratory can only take on a certain number of undergraduate researchers each semester. Additionally, it is also widely acknowledged that it is difficult for teachers to meet research goals while providing the best possible coursework for undergraduate students. Both of these bottlenecks can be circumvented via Classroom Undergraduate Research Experiences (CUREs), which integrate research into the curricula of structured undergraduate classes. Students enrolled in classes that include CUREs conduct research to address open-ended questions as part of their coursework. In this commentary, I describe the many ways in which CUREs are helpful for students and teachers, as well as considerations for designing successful CUREs. I provide several examples of CUREs from Microbial Physiology laboratory classes and Genomics classes that I have taught. Results from these CUREs have been successfully integrated into many peer-reviewed publications in which the students are co-authors, which has been a boon both to students’ post-baccalaureate opportunities, as well as my research agenda. </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> <a class="misc external-link" href="https://doi.org/10.1093/femsle/fnab036" target="_blank" title="Link to document DOI" data-ostiid="10300377"> Full Text Available <span class="fas fa-external-link-alt"></span> </a> </span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10197529-ubiquity-functional-uniformity-co2-concentrating-mechanisms-multiple-phyla-bacteria-suggested-diversity-prevalence-genes-encoding-candidate-dissolved-inorganic-carbon-transporters" itemprop="url"> <span class='span-link' itemprop="name">Ubiquity and functional uniformity in CO2 concentrating mechanisms in multiple phyla of Bacteria is suggested by a diversity and prevalence of genes encoding candidate dissolved inorganic carbon transporters</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1093/femsle/fnaa106" target="_blank" title="Link to document DOI">https://doi.org/10.1093/femsle/fnaa106  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Scott, Kathleen M</span> <span class="sep">; </span><span class="author" itemprop="author">Harmer, Tara L</span> <span class="sep">; </span><span class="author" itemprop="author">Gemmell, Bradford J</span> <span class="sep">; </span><span class="author" itemprop="author">Kramer, Andrew M</span> <span class="sep">; </span><span class="author" itemprop="author">Sutter, Markus</span> <span class="sep">; </span><span class="author" itemprop="author">Kerfeld, Cheryl A</span> <span class="sep">; </span><span class="author" itemprop="author">Barber, Kourtney S</span> <span class="sep">; </span><span class="author" itemprop="author">Bari, Saaurav</span> <span class="sep">; </span><span class="author" itemprop="author">Boling, Joshua W</span> <span class="sep">; </span><span class="author" itemprop="author">Campbell, Cassandra P</span> <span class="sep">; </span><span class="author">et al</span></span> <span class="year">( <time itemprop="datePublished" datetime="2020-07-01">July 2020</time> , FEMS Microbiology Letters) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> ABSTRACT Autotrophic microorganisms catalyze the entry of dissolved inorganic carbon (DIC; = CO2 + HCO3− + CO32−) into the biological component of the global carbon cycle, despite dramatic differences in DIC abundance and composition in their sometimes extreme environments. “Cyanobacteria” are known to have CO2 concentrating mechanisms (CCMs) to facilitate growth under low CO2 conditions. These CCMs consist of carboxysomes, containing enzymes ribulose 1,5-bisphosphate oxygenase and carbonic anhydrase, partnered to DIC transporters. CCMs and their DIC transporters have been studied in a handful of other prokaryotes, but it was not known how common CCMs were beyond “Cyanobacteria”. Since it had previously been noted that genes encoding potential transporters were found neighboring carboxysome loci, α-carboxysome loci were gathered from bacterial genomes, and potential transporter genes neighboring these loci are described here. Members of transporter families whose members all transport DIC (CHC, MDT and Sbt) were common in these neighborhoods, as were members of the SulP transporter family, many of which transport DIC. 109 of 115 taxa with carboxysome loci have some form of DIC transporter encoded in their genomes, suggesting that CCMs consisting of carboxysomes and DIC transporters are widespread not only among “Cyanobacteria”, but also among members of “Proteobacteria” and “Actinobacteria”. </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> <a class="misc external-link" href="https://doi.org/10.1093/femsle/fnaa106" target="_blank" title="Link to document DOI" data-ostiid="10197529"> Full Text Available <span class="fas fa-external-link-alt"></span> </a> </span> </div> </div><div class="clearfix"></div> </div> </li> </ol> <div id="pagination-lower" style="display:none;"> <div class="pull-right" style="line-height: 30px;"> <div class="btn-group pagination nomargin"> <a href="#" class="btn btn-sm btn-default noborderradius" disabled="disabled">«<span class="hidden-xs"> Prev</span></a> <a class="dropdown-toggle btn btn-sm btn-default paging-dropdown disabled hidden-xs noborderradius" href="#" data-toggle="dropdown"> <span class="caret"></span> <span class="sr-only">Select page number</span> </a> <a href="#" class="btn btn-sm btn-default noborderradius" disabled="disabled"><span class="hidden-xs">Next </span>»</a> </div> </div> <div class="clearfix"></div> </div> </div> </div> </div> <!-- / basic search results --> </div> </div> <input type='hidden' id='schtype' value=''/> </div> </div> <footer class="row" id="footer-wrapper"> <div class="footer-content"> <div id="footerOSTI" class=" hidden-print"> <ul> <li><a target="_blank" rel="noreferrer" href="http://www.nsf.gov/policies/">Website Policies</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/about/performance/">Budget and Performance</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/oig/">Inspector General</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/policies/privacy.jsp">Privacy</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/policies/foia.jsp">FOIA</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/od/odi/notice.jsp">No FEAR Act</a> | <a target="_blank" rel="noreferrer" href="http://usa.gov">USA.gov</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/policies/access.jsp">Accessibility</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/policies/nsf_plain_language.jsp">Plain Language</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/help/contact.jsp">Contact</a> | <a target="_blank" rel="noreferrer" href="https://nsf.gov/help/">Help</a> </li> </ul> The National Science Foundation, 2415 Eisenhower Avenue, Alexandria, Virginia 22314, USA Tel: (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749 </div> </div> </footer> </div> <div id="authorselect" class="modal" tabindex="-1" role="dialog" aria-labelledby="authorselect_label" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button> <div id="authorselect_label">Author Select</div> </div> <form id="authorselect-form" style="margin-bottom: 0px;"> <input type="hidden" name="pg" id="authorselect-pg" value="1" /> <div class="modal-body" id="authorselect_body"> <div class="row"> <div class="col-md-4"> <label for="authorselect-lname">Last Name:</label><br /> <input type="text" name="lname" class="input-sm form-control" id="authorselect-lname" placeholder="Last name" /><br /> </div> <div class="col-md-4"> <label for="authorselect-fname">First Name:</label><br /> <input type="text" name="fname" class="input-sm form-control" id="authorselect-fname" placeholder="First name" /> </div> <div class="col-md-2">  <br /> <a href="#" onclick="$('#authorselect-form').submit(); return false;" class="btn btn-sm btn-default"><span class="fas fa-search"></span><span class="sr-only">Search</span></a> </div> </div> <div class="push_top"></div> <div class="row"> <div class="col-md-12"> <ul class="nav nav-tabs"> <li class="active"><a href="#authorselect-tab-res" id="authorselect-tab-res-btn" data-toggle="tab">Search Results</a></li> <li><a href="#authorselect-tab-sel" id="authorselect-tab-sel-btn" data-toggle="tab">Selected Authors</a></li> </ul> <div class="tab-content"> <div class="tab-pane active" id="authorselect-tab-res" style="max-height: 450px;"> <div class="padding text-muted" id="authorselect-tab-res-content">Type in a name, or the first few letters of a name, in one or both of appropriate search boxes above and select the search button. An attempt will be made to match authors that most closely relate to the text you typed.</div> </div> <div class="tab-pane" id="authorselect-tab-sel" style="max-height: 450px;"> <div class="padding text-muted" id="authorselect-tab-sel-content">No authors are currently selected. Choosing "Select These Authors" will enter a blank value for author search in the parent form.</div> </div> </div> </div> </div> </div> <div class="modal-footer"> <button class="btn btn-sm btn-default" data-dismiss="modal" aria-hidden="true">Close</button> <button class="btn btn-sm btn-default" aria-hidden="true" type="button" id="authorselect_review" onclick="$('#authorselect-tab-sel-btn').click();" style="display: none;">Review Selections</button> <button class="btn btn-sm btn-default" aria-hidden="true" type="button" id="authorselect_submit" onclick="authorSelectAddToForm(); $('#authorselect').modal('hide');">Add Selections</button> </div> </form> </div> </div> </div> <div id="editorselect" class="modal" tabindex="-1" role="dialog" aria-labelledby="editorselect_label" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button> <div id="editorselect_label">Editor Select</div> </div> <form id="editorselect-form" style="margin-bottom: 0px;"> <input type="hidden" name="pg" id="editorselect-pg" value="1" /> <div class="modal-body" id="editorselect_body"> <div class="row"> <div class="col-md-4"> <label for="editorselect-lname">Last Name:</label><br /> <input type="text" name="lname" class="input-sm form-control" id="editorselect-lname" placeholder="Last name" /><br /> </div> <div class="col-md-4"> <label for="editorselect-fname">First Name:</label><br /> <input type="text" name="fname" class="input-sm form-control" id="editorselect-fname" placeholder="First name" /> </div> <div class="col-md-2">  <br /> <a href="#" onclick="$('#editorselect-form').submit(); return false;" class="btn btn-sm btn-default"><span class="fas fa-search"></span><span class="sr-only">Search</span></a> </div> </div> <div class="push_top"></div> <div class="row"> <div class="col-md-12"> <ul class="nav nav-tabs"> <li class="active"><a href="#editorselect-tab-res" id="editorselect-tab-res-btn" data-toggle="tab">Search Results</a></li> <li><a href="#editorselect-tab-sel" id="editorselect-tab-sel-btn" data-toggle="tab">Selected Editors</a></li> </ul> <div class="tab-content"> <div class="tab-pane active" id="editorselect-tab-res" style="max-height: 450px;"> <div class="padding text-muted" id="editorselect-tab-res-content">Type in a name, or the first few letters of a name, in one or both of appropriate search boxes above and select the search button. An attempt will be made to match editors that most closely relate to the text you typed.</div> </div> <div class="tab-pane" id="editorselect-tab-sel" style="max-height: 450px;"> <div class="padding text-muted" id="editorselect-tab-sel-content">No editors are currently selected. Choosing "Select These Editors" will enter a blank value for editor search in the parent form.</div> </div> </div> </div> </div> </div> <div class="modal-footer"> <button class="btn btn-sm btn-default" data-dismiss="modal" aria-hidden="true">Close</button> <button class="btn btn-sm btn-default" aria-hidden="true" type="button" id="editorselect_review" onclick="$('#editorselect-tab-sel-btn').click();" style="display: none;">Review Selections</button> <button class="btn btn-sm btn-default" aria-hidden="true" type="button" id="editorselect_submit" onclick="editorSelectAddToForm();$('#editorselect').modal('hide');">Add Selections</button> </div> </form> </div> </div> </div> <div class="push_top"></div> <!-- External Link Modal --> <div class="modal fade" id="external-link-modal" tabindex="-1" role="dialog"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close nsf-close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> <h4 class="modal-title"><strong>Warning: Leaving National Science Foundation Website</strong></h4> </div> <div class="modal-body"> <div> <img src="https://par.nsf.gov/img/nsf/nsf_logo.png" width="292" height="53" alt="National Science Foundation Logo" border="0" /> </div> <br> <span>You are now leaving the National Science Foundation website to go to a non-government website.</span> <br> <br> Website: <a id="external-link-url" rel='noopener noreferrer' target='_blank'></a> <br> <br> <span> NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site. </span> <br> <br> </div> <div class="modal-footer"> <div class="pull-right"> <button id="external-link-continue" type="button" data-extlink="" class="btn btn-primary" data-dismiss="modal"><u>Continue to Site</u></button> <button type="button" class="btn btn-default" data-dismiss="modal"><u>Cancel</u></button> </div> </div> </div> </div> </div> <!-- /content --> <input type='hidden' id='webtrend-id' value='dcsngbilzcxafpc7vw2qgbbij_3j2v'/> <input type='hidden' id='js-context-path' value='https://par.nsf.gov/'/> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-MML-AM_CHTML" defer></script> <script type="text/x-mathjax-config" defer> MathJax.Hub.Config({ tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]} }); </script> <noscript></noscript> <script src="https://par.nsf.gov/js/context.js" type="text/javascript" defer></script> <noscript>You must have javascript enabled</noscript> <script src="https://par.nsf.gov/js/libraries/jquery.min.js" type="text/javascript" defer></script> <noscript></noscript> <script src="https://par.nsf.gov/chosen/chosen.jquery.min.js" type="text/javascript" defer></script> <noscript></noscript> <script src="https://par.nsf.gov/js/nsf_pages.extras.min.js" type="text/javascript" defer></script> <noscript></noscript> <script src="https://par.nsf.gov/js/nsf_pages.min.js" type="text/javascript" defer></script> <noscript></noscript> <!--$$$$$$$$$ the following blocks are for WebTrends $$$$$$$$--> <!-- START OF SmartSource Data Collector TAG --> <!-- Copyright (c) 1996-2009 WebTrends Inc. All rights reserved. --> <!-- Version: 8.6.2 --> <!-- Tag Builder Version: 3.0 --> <!-- Created: 5/7/2009 8:32:37 PM --> <script src="https://par.nsf.gov/js/webtrends.min.js" type="text/javascript" defer></script> <noscript></noscript> <!-- ----------------------------------------------------------------------------------- --> <!-- Warning: The two script blocks below must remain inline. Moving them to an external --> <!-- JavaScript include file can cause serious problems with cross-domain tracking. --> <!-- ----------------------------------------------------------------------------------- --> <script src="https://par.nsf.gov/js/webtrend-script.min.js" type="text/javascript" defer></script> <noscript> <div><img alt="" id="DCSIMG" width="1" height="1" src="http://wt.research.gov/dcsngbilzcxafpc7vw2qgbbij_3j2v/njs.gif?dcsuri=/nojavascript&WT.js=No&DCS.dcscfg=1&WT.tv=8.6.2"/></div> </noscript> <script src="https://par.nsf.gov/js/webtrendsactions.min.js" type="text/javascript" defer></script> <noscript></noscript> <!-- $$$$$$$$ End WebTrends $$$$$ --> <!-- /scripts --> </body> <!-- NSF PAGES v.@project.version@ --> </html>