skip to main content


Title: Dissolved inorganic carbon accumulating complexes from autotrophic bacteria from extreme environments
In nature, concentrations of dissolved inorganic carbon (DIC; = CO 2 + HCO 3 - + CO 3 2- ) can be low, and autotrophic organisms adapt with a variety of mechanisms to elevate intracellular DIC concentrations to enhance CO 2 fixation. Such mechanisms have been well-studied in Cyanobacteria , but much remains to be learned about their activity in other phyla. Novel multi-subunit membrane-spanning complexes capable of elevating intracellular DIC were recently described in three species of bacteria. Homologs of these complexes are distributed among 17 phyla in Bacteria and Archaea, and are predicted to consist of one, two, or three subunits. To determine whether DIC accumulation is a shared feature of these diverse complexes, seven of them, representative of organisms from four phyla, from a variety of habitats, and with three different subunit configurations were chosen for study. A high-CO 2 requiring, carbonic anhydrase-deficient ( yadF - cynT - ) strain of E. coli Lemo21(DE3), which could be rescued via elevated intracellular DIC concentrations, was created for heterologous expression and characterization of the complexes. Expression of all seven complexes rescued the ability of E. coli Lemo21(DE3) yadF - cynT - to grow under low CO 2 conditions, and six of the seven generated measurably elevated intracellular DIC concentrations when their expression was induced. For complexes consisting of two or three subunits, all subunits were necessary for DIC accumulation. Isotopic disequilibrium experiments clarified that CO 2 was the substrate for these complexes. In addition, the presence of an ionophore prevented the accumulation of intracellular DIC, suggesting that these complexes may couple proton potential to DIC accumulation. IMPORTANCE To facilitate the synthesis of biomass from CO 2 , autotrophic organisms use a variety of mechanisms to increase intracellular DIC concentrations. A novel type of multi-subunit complex has recently been described, which has been shown to generate measurably elevated intracellular DIC concentrations in three species of bacteria, begging the question of whether these complexes share this capability across the 17 phyla of Bacteria and Archaea where they are found. This study shows that DIC accumulation is a trait shared by complexes with varied subunit structures, from organisms with diverse physiologies and taxonomies, suggesting that this trait is universal among them. Successful expression in E. coli suggests the possibility of their expression in engineered organisms synthesizing compounds of industrial importance from CO 2 .  more » « less
Award ID(s):
1952676
NSF-PAR ID:
10300375
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Bacteriology
ISSN:
0021-9193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The anti-Shine-Dalgarno (ASD) sequence of 16S rRNA is highly conserved across Bacteria, and yet usage of Shine-Dalgarno (SD) sequences in mRNA varies dramatically, depending on the lineage. Here, we compared the effects of ASD mutagenesis in Escherichia coli , a Gammaproteobacteria which commonly employs SD sequences, and Flavobacterium johnsoniae , a Bacteroidia which rarely does. In E. coli , 30S subunits carrying any single substitution at positions 1,535–1,539 confer dominant negative phenotypes, whereas subunits with mutations at positions 1,540–1,542 are sufficient to support cell growth. These data suggest that CCUCC (1,535–1,539) represents the functional core of the element in E. coli . In F. johnsoniae , deletion of three ribosomal RNA ( rrn ) operons slowed growth substantially, a phenotype largely rescued by a plasmid-borne copy of the rrn operon. Using this complementation system, we found that subunits with single mutations at positions 1,535–1,537 are as active as control subunits, in sharp contrast to the E. coli results. Moreover, subunits with quadruple substitution or complete replacement of the ASD retain substantial, albeit reduced, activity. Sedimentation analysis revealed that these mutant subunits are overrepresented in the subunit fractions and underrepresented in polysome fractions, suggesting some defect in 30S biogenesis and/or translation initiation. Nonetheless, our collective data indicate that the ASD plays a much smaller role in F. johnsoniae than in E. coli , consistent with SD usage in the two organisms. 
    more » « less
  2. null (Ed.)
    Many photosynthetic organisms employ a CO 2 concentrating mechanism (CCM) to increase the rate of CO 2 fixation via the Calvin cycle. CCMs catalyze ≈50% of global photosynthesis, yet it remains unclear which genes and proteins are required to produce this complex adaptation. We describe the construction of a functional CCM in a non-native host, achieved by expressing genes from an autotrophic bacterium in an Escherichia coli strain engineered to depend on rubisco carboxylation for growth. Expression of 20 CCM genes enabled E. coli to grow by fixing CO 2 from ambient air into biomass, with growth in ambient air depending on the components of the CCM. Bacterial CCMs are therefore genetically compact and readily transplanted, rationalizing their presence in diverse bacteria. Reconstitution enabled genetic experiments refining our understanding of the CCM, thereby laying the groundwork for deeper study and engineering of the cell biology supporting CO 2 assimilation in diverse organisms. 
    more » « less
  3. Abstract

    Proliferation of multidrug-resistant (MDR) bacteria poses a threat to human health, requiring new strategies. Here we propose using fitness neutral gene expression perturbations to potentiate antibiotics. We systematically explored 270 gene knockout-antibiotic combinations inEscherichia coli, identifying 90 synergistic interactions. Identified gene targets were subsequently tested for antibiotic synergy on the transcriptomic level via multiplexed CRISPR-dCas9 and showed successful sensitization ofE. coliwithout a separate fitness cost. These fitness neutral gene perturbations worked as co-therapies in reducing aSalmonella entericaintracellular infection in HeLa. Finally, these results informed the design of four antisense peptide nucleic acid (PNA) co-therapies,csgD,fnr,recAandacrA, against four MDR, clinically isolated bacteria. PNA combined with sub-minimal inhibitory concentrations of trimethoprim against two isolates ofKlebsiella pneumoniaeandE. colishowed three cases of re-sensitization with minimal fitness impacts. Our results highlight a promising approach for extending the utility of current antibiotics.

     
    more » « less
  4. Colwellia psychrerythraea34H is a model psychrophilic bacterium found in the cold ocean—polar sediments, sea ice, and the deep sea. Although the genomes of such psychrophiles have been sequenced, their metabolic strategies at low temperature have not been quantified. We measured the metabolic fluxes and gene expression of 34H at 4 °C (the mean global-ocean temperature and a normal-growth temperature for 34H), making comparative analyses at room temperature (above its upper-growth temperature of 18 °C) and with mesophilicEscherichia coli. When grown at 4 °C, 34H utilized multiple carbon substrates without catabolite repression or overflow byproducts; its anaplerotic pathways increased flux network flexibility and enabled CO2fixation. In glucose-only medium, the Entner–Doudoroff (ED) pathway was the primary glycolytic route; in lactate-only medium, gluconeogenesis and the glyoxylate shunt became active. In comparison,E. coli, cold stressed at 4 °C, had rapid glycolytic fluxes but no biomass synthesis. At their respective normal-growth temperatures, intracellular concentrations of TCA cycle metabolites (α-ketoglutarate, succinate, malate) were 4–17 times higher in 34H than inE. coli, while levels of energy molecules (ATP, NADH, NADPH) were 10- to 100-fold lower. Experiments withE. colimutants supported the thermodynamic advantage of the ED pathway at cold temperature. Heat-stressed 34H at room temperature (2 hours) revealed significant down-regulation of genes associated with glycolytic enzymes and flagella, while 24 hours at room temperature caused irreversible cellular damage. We suggest that marine heterotrophic bacteria in general may rely upon simplified metabolic strategies to overcome thermodynamic constraints and thrive in the cold ocean.

     
    more » « less
  5. Annually, half of all plant-derived carbon is added to soil where it is microbially respired to CO 2 . However, understanding of the microbiology of this process is limited because most culture-independent methods cannot link metabolic processes to the organisms present, and this link to causative agents is necessary to predict the results of perturbations on the system. We collected soil samples at two sub-root depths (10–20 cm and 30–40 cm) before and after a rainfall-driven nutrient perturbation event in a Northern California grassland that experiences a Mediterranean climate. From ten samples, we reconstructed 198 metagenome-assembled genomes that represent all major phylotypes. We also quantified 6,835 proteins and 175 metabolites and showed that after the rain event the concentrations of many sugars and amino acids approach zero at the base of the soil profile. Unexpectedly, the genomes of novel members of the Gemmatimonadetes and Candidate Phylum Rokubacteria phyla encode pathways for methylotrophy. We infer that these abundant organisms contribute substantially to carbon turnover in the soil, given that methylotrophy proteins were among the most abundant proteins in the proteome. Previously undescribed Bathyarchaeota and Thermoplasmatales archaea are abundant in deeper soil horizons and are inferred to contribute appreciably to aromatic amino acid degradation. Many of the other bacteria appear to breakdown other components of plant biomass, as evidenced by the prevalence of various sugar and amino acid transporters and corresponding hydrolyzing machinery in the proteome. Overall, our work provides organism-resolved insight into the spatial distribution of bacteria and archaea whose activities combine to degrade plant-derived organics, limiting the transport of methanol, amino acids and sugars into underlying weathered rock. The new insights into the soil carbon cycle during an intense period of carbon turnover, including biogeochemical roles to previously little known soil microbes, were made possible via the combination of metagenomics, proteomics, and metabolomics. 
    more » « less