We prove that all rational slopes are characterizing for the knot , except possibly for positive integers. Along the way, we classify the Dehn surgeries on knots in that produce the Brieskorn sphere , and we study knots on which large integral surgeries are almost L‐spaces.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
00000040000
- More
- Availability
-
22
- Author / Contributor
- Filter by Author / Creator
-
-
Baldwin, John A (4)
-
Sivek, Steven (3)
-
Li, Zhenkun (2)
-
Ye, Fan (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available June 1, 2025 -
Baldwin, John A ; Li, Zhenkun ; Sivek, Steven ; Ye, Fan ( , Geometry & Topology)Free, publicly-accessible full text available January 1, 2025
-
Baldwin, John A ; Li, Zhenkun ; Ye, Fan ( , Compositio Mathematica)
Suppose
is an admissible Heegaard diagram for a balanced sutured manifold$\mathcal {H}$ . We prove that the number of generators of the associated sutured Heegaard Floer complex is an upper bound on the dimension of the sutured instanton homology$(M,\gamma )$ . It follows, in particular, that strong L-spaces are instanton L-spaces.$\mathit {SHI}(M,\gamma )$ -
Baldwin, John A ; Sivek, Steven ( , Annales Henri Lebesgue)