skip to main content


Search for: All records

Award ID contains: 1953740

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One-Class Support Vector Machines (OCSVMs) are a set of common approaches for novelty detection due to their flexibility in fitting complex nonlinear boundaries between normal and novel data. Novelty detection is important in the Internet of Things (“IoT”) due to the potential threats that IoT devices can present, and OCSVMs often perform well in these environments due to the variety of devices, traffic patterns, and anomalies that IoT devices present. Unfortunately, conventional OCSVMs can introduce prohibitive memory and computational overhead in detection. This work designs, implements, and evaluates an efficient OCSVM for such practical settings. We extend Nyström and (Gaussian) Sketching approaches to OCSVM, combining these methods with clustering and Gaussian mixture models to achieve 15-30x speedup in prediction time and 30-40x reduction in memory requirements without sacrificing detection accuracy. Here, the very nature of IoT devices is crucial: they tend to admit few modes of normal operation, allowing for efficient pattern compression. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Abstract The proliferation of smart home Internet of things (IoT) devices presents unprecedented challenges for preserving privacy within the home. In this paper, we demonstrate that a passive network observer (e.g., an Internet service provider) can infer private in-home activities by analyzing Internet traffic from commercially available smart home devices even when the devices use end-to-end transport-layer encryption . We evaluate common approaches for defending against these types of traffic analysis attacks, including firewalls, virtual private networks, and independent link padding, and find that none sufficiently conceal user activities with reasonable data overhead. We develop a new defense, “stochastic traffic padding” (STP), that makes it difficult for a passive network adversary to reliably distinguish genuine user activities from generated traffic patterns designed to look like user interactions. Our analysis provides a theoretical bound on an adversary’s ability to accurately detect genuine user activities as a function of the amount of additional cover traffic generated by the defense technique. 
    more » « less
  4. null (Ed.)