skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Efficient One-Class SVM for Novelty Detection in IoT
One-Class Support Vector Machines (OCSVMs) are a set of common approaches for novelty detection due to their flexibility in fitting complex nonlinear boundaries between normal and novel data. Novelty detection is important in the Internet of Things (“IoT”) due to the potential threats that IoT devices can present, and OCSVMs often perform well in these environments due to the variety of devices, traffic patterns, and anomalies that IoT devices present. Unfortunately, conventional OCSVMs can introduce prohibitive memory and computational overhead in detection. This work designs, implements, and evaluates an efficient OCSVM for such practical settings. We extend Nyström and (Gaussian) Sketching approaches to OCSVM, combining these methods with clustering and Gaussian mixture models to achieve 15-30x speedup in prediction time and 30-40x reduction in memory requirements without sacrificing detection accuracy. Here, the very nature of IoT devices is crucial: they tend to admit few modes of normal operation, allowing for efficient pattern compression.  more » « less
Award ID(s):
1953740
PAR ID:
10395945
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Transactions on machine learning research
Volume:
2022
Issue:
11
ISSN:
2835-8856
Page Range / eLocation ID:
1-24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Internet of Things (IoT) devices have increased drastically in complexity and prevalence within the last decade. Alongside the proliferation of IoT devices and applications, attacks targeting them have gained popularity. Recent large-scale attacks such as Mirai and VPNFilter highlight the lack of comprehensive defenses for IoT devices. Existing security solutions are inadequate against skilled adversaries with sophisticated and stealthy attacks against IoT devices. Powerful provenance-based intrusion detection systems have been successfully deployed in resource-rich servers and desktops to identify advanced stealthy attacks. However, IoT devices lack the memory, storage, and computing resources to directly apply these provenance analysis techniques on the device. This paper presents ProvIoT, a novel federated edge-cloud security framework that enables on-device syscall-level behavioral anomaly detection in IoT devices. ProvIoT applies federated learning techniques to overcome data and privacy limitations while minimizing network overhead. Infrequent on-device training of the local model requires less than 10% CPU overhead; syncing with the global models requires sending and receiving 2MB over the network. During normal offline operation, ProvIoT periodically incurs less than 10% CPU overhead and less than 65MB memory usage for data summarization and anomaly detection. Our evaluation shows that ProvIoT detects fileless malware and stealthy APT attacks with an average F1 score of 0.97 in heterogeneous real-world IoT applications. ProvIoT is a step towards extending provenance analysis to resource-constrained IoT devices, beginning with well-resourced IoT devices such as the RaspberryPi, Jetson Nano, and Google TPU. 
    more » « less
  2. Abstract Health monitoring of civil infrastructures is a key application of Internet of things (IoT), while edge computing is an important component of IoT. In this context, swarms of autonomous inspection robots, which can replace current manual inspections, are examples of edge devices. Incorporation of pretrained deep learning algorithms into these robots for autonomous damage detection is a challenging problem since these devices are typically limited in computing and memory resources. This study introduces a solution based on network pruning using Taylor expansion to utilize pretrained deep convolutional neural networks for efficient edge computing and incorporation into inspection robots. Results from comprehensive experiments on two pretrained networks (i.e., VGG16 and ResNet18) and two types of prevalent surface defects (i.e., crack and corrosion) are presented and discussed in detail with respect to performance, memory demands, and the inference time for damage detection. It is shown that the proposed approach significantly enhances resource efficiency without decreasing damage detection performance. 
    more » « less
  3. As we enter the Internet of Things (IoT) era, the size of mobile computing devices is largely reduced while their computing capability is dramatically improved. Meanwhile, machine learning technologies have been well developed and shown cutting edge performance in various tasks, leading to their wide adoption. As a result, moving machine learning, especially deep learning capability to the edge of the IoT is a trend happening today. But directly moving machine learning algorithms which originally run on PC platform is not feasible for IoT devices due to their relatively limited computing power. In this paper, we first reviewed several representative approaches for enabling deep learning on mobile/IoT devices. Then we evaluated the performance and impact of these methods on IoT platform equipped with integrated GPU and ARM processor. Our results show that we can enable the deep learning capability on the edge of the IoT if we apply these approaches in an efficient manner. 
    more » « less
  4. The Internet of Things (IoT) is a network of sensors that helps collect data 24/7 without human intervention. However, the network may suffer from problems such as the low battery, heterogeneity, and connectivity issues due to the lack of standards. Even though these problems can cause several performance hiccups, security issues need immediate attention because hackers access vital personal and financial information and then misuse it. These security issues can allow hackers to hijack IoT devices and then use them to establish a Botnet to launch a Distributed Denial of Service (DDoS) attack. Blockchain technology can provide security to IoT devices by providing secure authentication using public keys. Similarly, Smart Contracts (SCs) can improve the performance of the IoT–blockchain network through automation. However, surveyed work shows that the blockchain and SCs do not provide foolproof security; sometimes, attackers defeat these security mechanisms and initiate DDoS attacks. Thus, developers and security software engineers must be aware of different techniques to detect DDoS attacks. In this survey paper, we highlight different techniques to detect DDoS attacks. The novelty of our work is to classify the DDoS detection techniques according to blockchain technology. As a result, researchers can enhance their systems by using blockchain-based support for detecting threats. In addition, we provide general information about the studied systems and their workings. However, we cannot neglect the recent surveys. To that end, we compare the state-of-the-art DDoS surveys based on their data collection techniques and the discussed DDoS attacks on the IoT subsystems. The study of different IoT subsystems tells us that DDoS attacks also impact other computing systems, such as SCs, networking devices, and power grids. Hence, our work briefly describes DDoS attacks and their impacts on the above subsystems and IoT. For instance, due to DDoS attacks, the targeted computing systems suffer delays which cause tremendous financial and utility losses to the subscribers. Hence, we discuss the impacts of DDoS attacks in the context of associated systems. Finally, we discuss Machine-Learning algorithms, performance metrics, and the underlying technology of IoT systems so that the readers can grasp the detection techniques and the attack vectors. Moreover, associated systems such as Software-Defined Networking (SDN) and Field-Programmable Gate Arrays (FPGA) are a source of good security enhancement for IoT Networks. Thus, we include a detailed discussion of future development encompassing all major IoT subsystems. 
    more » « less
  5. IoT devices fundamentally lack built-in security mechanisms to protect themselves from security attacks. Existing works on improving IoT security mostly focus on detecting anomalous behaviors of IoT devices. However, these existing anomaly detection schemes may trigger an overwhelmingly large number of false alerts, rendering them unusable in detecting compromised IoT devices. In this paper we develop an effective and efficient framework, named CUMAD, to detect compromised IoT devices. Instead of directly relying on individual anomalous events, CUMAD aims to accumulate sufficient evidence in detecting compromised IoT devices, by integrating an autoencoder-based anomaly detection subsystem with a sequential probability ratio test (SPRT)-based sequential hypothesis testing subsystem. CUMAD can effectively reduce the number of false alerts in detecting compromised IoT devices, and moreover, it can detect compromised IoT devices quickly. Our evaluation studies based on the public-domain N-BaIoT dataset show that CUMAD can on average reduce the false positive rate from about 3.57% using only the autoencoder-based anomaly detection scheme to about 0.5%; in addition, CUMAD can detect compromised IoT devices quickly, with less than 5 observations on average. 
    more » « less