skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1954613

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 7, 2025
  2. Based on data from a teaching experiment with two undergraduate students, we propose the unitizing of predicates as a construct to describe how students render various mathematical conditions as predicates such that various theorems have the same logical structure. This may be a challenge when conditions are conjunctions, negative, involve auxiliary objects, or are quantified. We observe that unitizing predicates in theorems and proofs seemed necessary for students in our study to see various theorems as having the same structure. Once they had done so, they reiterated an argument for why contrapositive proofs proved their associated theorems, showing the emergence of logical structure. 
    more » « less
  3. Based on data from a teaching experiment with two undergraduate students, we propose the unitizing of predicates as a construct to describe how students render various mathematical conditions as predicates such that various theorems have the same logical structure. This may be a challenge when conditions are conjunctions, negative, involve auxiliary objects, or are quantified. We observe that unitizing predicates in theorems and proofs seemed necessary for students in our study to see various theorems as having the same structure. Once they had done so, they reiterated an argument for why contrapositive proofs proved their associated theorems, showing the emergence of logical structure. 
    more » « less