skip to main content


Search for: All records

Award ID contains: 1954868

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When irradiated with blue light in the presence of a Lewis base (L), [CpW(CO) 3 ] 2 undergoes metal–metal bond cleavage followed by a disproportionation reaction to form [CpW(CO) 3 L] + and [CpW(CO) 3 ] − . Here, we show that in the presence of pyridinium tetrafluoroborate, [CpW(CO) 3 ] − reacts further to form a metal hydride complex CpW(CO) 3 H. The rection was monitored through in situ photo 1 H NMR spectroscopy experiments and the mechanism of light-driven hydride formation was investigated by determining quantum yields of formation. Quantum yields of formation of CpW(CO) 3 H correlate with I −1/2 (I = photon flux on our sample tube), indicating that the net disproportionation of [CpW(CO) 3 ] 2 to form the hydride precursor [CpW(CO) 3 ] − occurs primarily through a radical chain mechanism. 
    more » « less
  2. null (Ed.)
    The ligand-to-metal charge transfer (LMCT) transitions of [Re(dmpe)3]2+ (dmpe = bis-1,2-(dimethylphosphino)ethane) were interrogated using UV/Vis absorbance spectroscopy, photoluminescence spectroscopy, and time-dependent density functional theory. The solvent dependence of the lowest energy charge transfer transition was quantified; no solvatochromism was observed. TD-DFT calculations reveal the dominant LMCT transition is highly symmetric and delocalized involving all phopshine ligand donors in the charge transfer, providing an understanding for the absence of solvatochromism of [Re(dmpe)3]2+. 
    more » « less