skip to main content


Search for: All records

Award ID contains: 1955246

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deformable Convolutional Networks (DCN) have been proposed as a powerful tool to boost the representation power of Convolutional Neural Networks (CNN) in computer vision tasks via adaptive sampling of the input feature map. Much like vision transformers, DCNs utilize a more flexible inductive bias than standard CNNs and have also been shown to improve performance of particular models. For example, drop-in DCN layers were shown to increase the AP score of Mask RCNN by 10.6 points while introducing only 1% additional parameters and FLOPs, improving the state-of-the art model at the time of publication. However, despite evidence that more DCN layers placed earlier in the network can further improve performance, we have not seen this trend continue with further scaling of deformations in CNNs, unlike for vision transformers. Benchmarking experiments show that a realistically sized DCN layer (64H×64W, 64 in-out channel) incurs a 4× slowdown on a GPU platform, discouraging the more ubiquitous use of deformations in CNNs. These slowdowns are caused by the irregular input-dependent access patterns of the bilinear interpolation operator, which has a disproportionately low arithmetic intensity (AI) compared to the rest of the DCN. To address the disproportionate slowdown of DCNs and enable their expanded use in CNNs, we propose DefT, a series of workload-aware optimizations for DCN kernels. DefT identifies performance bottlenecks in DCNs and fuses specific operators that are observed to limit DCN AI. Our approach also uses statistical information of DCN workloads to adapt the workload tiling to the DCN layer dimensions, minimizing costly out-of-boundary input accesses. Experimental results show that DefT mitigates up to half of DCN slowdown over the current-art PyTorch implementation. This translates to a layerwise speedup of up to 134% and a reduction of normalized training time of 46% on a fully DCN-enabled ResNet model. 
    more » « less
  2. Processing-in-memory (PIM) based architecture shows great potential to process several emerging artificial intelligence workloads, including vision and language models. Cross-layer optimizations could bridge the gap between computing density and the available resources by reducing the computation and memory cost of the model and improving the model’s robustness against non-ideal hardware effects. We first introduce several hardware-aware training methods to improve the model robustness to the PIM device’s nonideal effects, including stuck-at-fault, process variation, and thermal noise. Then, we further demonstrate a software/hardware (SW/HW) co-design methodology to efficiently process the state-of-the-art attention-based model on PIM-based architecture by performing sparsity exploration for the attention-based model and circuit architecture co-design to support the sparse processing. 
    more » « less
  3. Neural network models have demonstrated outstanding performance in a variety of applications, from image classification to natural language processing. However, deploying the models to hardware raises efficiency and reliability issues. From the efficiency perspective, the storage, computation, and communication cost of neural network processing is considerably large because the neural network models have a large number of parameters and operations. From the standpoint of robustness, the perturbation in hardware is unavoidable and thus the performance of neural networks can be degraded. As a result, this paper investigates effective learning and optimization approaches as well as advanced hardware designs in order to build efficient and robust neural network designs. 
    more » « less
  4. With the recent demand of deploying neural network models on mobile and edge devices, it is desired to improve the model's generalizability on unseen testing data, as well as enhance the model's robustness under fixed-point quantization for efficient deployment. Minimizing the training loss, however, provides few guarantees on the generalization and quantization performance. In this work, we fulfill the need of improving generalization and quantization performance simultaneously by theoretically unifying them under the framework of improving the model's robustness against bounded weight perturbation and minimizing the eigenvalues of the Hessian matrix with respect to model weights. We therefore propose HERO, a Hessian-enhanced robust optimization method, to minimize the Hessian eigenvalues through a gradient-based training process, simultaneously improving the generalization and quantization performance. HERO enables up to a 3.8% gain on test accuracy, up to 30% higher accuracy under 80% training label perturbation, and the best post-training quantization accuracy across a wide range of precision, including a > 10% accuracy improvement over SGD-trained models for common model architectures on various datasets. 
    more » « less
  5. A photonic generative adversarial network that harnesses optoelectronic noises to generate handwritten numbers is demonstrated. 
    more » « less