skip to main content


Search for: All records

Award ID contains: 1955535

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In this paper, we consider a status update system, in which update packets are sent to the destination via a wireless medium that allows for multiple rates, where a higher rate also naturally corresponds to a higher error probability. The data freshness is measured using age of information, which is defined as the age of the recent update at the destination. A packet that is transmitted with a higher rate, will encounter a shorter delay and a higher error probability. Thus, the choice of the transmission rate affects the age at the destination. In this paper, we design a low-complexity scheduler that selects between two different transmission rate and error probability pairs to be used at each transmission epoch. This problem can be cast as a Markov Decision Process. We show that there exists a threshold-type policy that is age-optimal. More importantly, we show that the objective function is quasi-convex or non-decreasing in the threshold, based on the system parameters values. This enables us to devise a low-complexity algorithm to minimize the age. These results reveal an interesting phenomenon: While choosing the rate with minimum mean delay is delay-optimal, this does not necessarily minimize the age. 
    more » « less
  2. null (Ed.)
    In this paper, we study the problem of minimizing the age of information when a source can transmit status updates over two heterogeneous channels. Our work is motivated by recent developments in 5G mmWave technology, where transmissions may occur over an unreliable but fast (e.g., mmWave) channel or a slow reliable (e.g., sub-6GHz) channel. The unreliable channel is modeled as a time-correlated Gilbert-Elliot channel, where information can be transmitted at a high rate when the channel is in the "ON" state. The reliable channel provides a deterministic but lower data rate. The scheduling strategy determines the channel to be used for transmission with the aim to minimize the time-average age of information (AoI). The optimal scheduling problem is formulated as a Markov Decision Process (MDP), which in our setting poses some significant challenges because e.g., supermodularity does not hold for part of the state space. We show that there exists a multi-dimensional threshold-based scheduling policy that is optimal for minimizing the age. A low-complexity bisection algorithm is further devised to compute the optimal thresholds. Numerical simulations are provided to compare different scheduling policies. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    The paper proposes a new text recognition network for scene-text images. Many state-of-the-art methods employ the attention mechanism either in the text encoder or decoder for the text alignment. Although the encoder-based attention yields promising results, these schemes inherit noticeable limitations. They perform the feature extraction (FE) and visual attention (VA) sequentially, which bounds the attention mechanism to rely only on the FE final single-scale output. Moreover, the utilization of the attention process is limited by only applying it directly to the single scale feature-maps. To address these issues, we propose a new multi-scale and encoder-based attention network for text recognition that performs the multi-scale FE and VA in parallel. The multi-scale channels also undergo regular fusion with each other to develop the coordinated knowledge together. Quantitative evaluation and robustness analysis on the standard benchmarks demonstrate that the proposed network outperforms the state-of-the-art in most cases. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)