skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 23, 2026

Title: Online Learning for Optimizing AoI-Energy Tradeoff under Unknown Channel Statistics
We consider a real-time monitoring system where a source node (with energy limitations) aims to keep the information status at a destination node as fresh as possible by scheduling status update transmissions over a set of channels. The freshness of information at the destination node is measured in terms of the Age of Information (AoI) metric. In this setting, a natural tradeoff exists between the transmission cost (or equivalently, energy consumption) of the source and the achievable AoI performance at the destination. This tradeoff has been optimized in the existing literature under the assumption of having a complete knowledge of the channel statistics. In this work, we develop online learning-based algorithms with finite-time guarantees that optimize this tradeoff in the practical scenario where the channel statistics are unknown to the scheduler. In particular, when the channel statistics are known, the optimal scheduling policy is first proven to have a threshold-based structure with respect to the value of AoI (i.e., it is optimal to drop updates when the AoI value is below some threshold). This key insight was then utilized to develop the proposed learning algorithms that surprisingly achieve an order-optimal regret (i.e., O(1)) with respect to the time horizon length.  more » « less
Award ID(s):
2107363 1955535 2106932
PAR ID:
10651737
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
Page Range / eLocation ID:
271 to 280
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we consider transmission scheduling in a status update system, where updates are generated periodically and transmitted over a Gilbert-Elliott fading channel. The goal is to minimize the long-run average age of information (AoI) under a long-run average energy constraint. We consider two practical cases to obtain channel state information (CSI): (i) without channel sensing and (ii) with delayed channel sensing. For (i), CSI is revealed by the feedback (ACK/NACK) of a transmission, but when no transmission occurs, CSI is not revealed. Thus, we have to balance tradeoffs across energy, AoI, channel exploration, and channel exploitation. The problem is formulated as a constrained partially observable Markov decision process (POMDP). We show that the optimal policy is a randomized mixture of no more than two stationary deterministic policies each of which is of a threshold-type in the belief on the channel. For (ii), (delayed) CSI is available via channel sensing. Then, the tradeoff is only between the AoI and energy. The problem is formulated as a constrained MDP. The optimal policy is shown to have a similar structure as in (i) but with an AoI associated threshold. With these, we develop an optimal structure-aware algorithm for each case. 
    more » « less
  2. The proliferation of IoT devices, with various capabilities in sensing, monitoring, and controlling, has prompted diverse emerging applications, highly relying on effective delivery of sensitive information gathered at edge devices to remote controllers for timely responses. To effectively deliver such information/status updates, this paper undertakes a holistic study of AoI in multi-hop networks by considering the relevant and realistic factors, aiming for optimizing information freshness by rapidly shipping sensitive updates captured at a source to its destination. In particular, we consider the multi-channel with OFDM (orthogonal frequency-division multiplexing) spectrum access in multi-hop networks and develop a rigorous mathematical model to optimize AoI at destination nodes. Real-world factors, including orthogonal channel access, wireless interference, and queuing model, are taken into account for the very first time to explore their impacts on the AoI. To this end, we propose two effective algorithms where the first one approximates the optimal solution as closely as we desire while the second one has polynomial time complexity, with a guaranteed performance gap to the optimal solution. The developed model and algorithms enable in-depth studies on AoI optimization problems in OFDM-based multi-hop wireless networks. Numerical results demonstrate that our solutions enjoy better AoI performance and that AoI is affected markedly by those realistic factors taken into our consideration. 
    more » « less
  3. A status updating system is considered in which a source updates a destination over an erasure channel. The utility of the updates is measured through a function of their age-of-information (AoI), which assesses their freshness. Correlated with the status updates is another process that needs to be kept private from the destination. Privacy is measured through a leakage function that depends on the amount and time of the status updates received: stale updates are more private than fresh ones. Different from most of the current AoI literature, a post-sampling waiting time is introduced in order to provide a privacy cover at the expense of AoI. More importantly, it is also shown that, depending on the leakage budget and the channel statistics, it can be useful to retransmit stale status updates following erasure events without resampling fresh ones. 
    more » « less
  4. null (Ed.)
    In this paper, we study the problem of minimizing the age of information when a source can transmit status updates over two heterogeneous channels. Our work is motivated by recent developments in 5G mmWave technology, where transmissions may occur over an unreliable but fast (e.g., mmWave) channel or a slow reliable (e.g., sub-6GHz) channel. The unreliable channel is modeled as a time-correlated Gilbert-Elliot channel, where information can be transmitted at a high rate when the channel is in the "ON" state. The reliable channel provides a deterministic but lower data rate. The scheduling strategy determines the channel to be used for transmission with the aim to minimize the time-average age of information (AoI). The optimal scheduling problem is formulated as a Markov Decision Process (MDP), which in our setting poses some significant challenges because e.g., supermodularity does not hold for part of the state space. We show that there exists a multi-dimensional threshold-based scheduling policy that is optimal for minimizing the age. A low-complexity bisection algorithm is further devised to compute the optimal thresholds. Numerical simulations are provided to compare different scheduling policies. 
    more » « less
  5. In this paper, we study a sampling and transmission scheduling problem for multi-source remote estimation, where a scheduler determines when to take samples from multiple continuous-time Gauss-Markov processes and send the samples over multiple channels to remote estimators. The sample transmission times are i.i.d. across samples and channels. The objective of the scheduler is to minimize the weighted sum of the time-average expected estimation errors of these Gauss-Markov sources. This problem is a continuous-time Restless Multi-armed Bandit (RMAB) problem with a continuous state space. We prove that the bandits are indexable and derive an exact expression of the Whittle index. To the extent of our knowledge, this is the first Whittle index policy for multi-source signal-aware remote estimation of Gauss-Markov processes. We further investigate signal-agnostic remote estimation and develop a Whittle index policy for multi-source Age of Information (AoI) minimization over parallel channels with i.i.d. random transmission times. Our results unite two theoretical frameworks for remote estimation and AoI minimization: threshold-based sampling and Whittle index-based scheduling. In the single-source, single-channel scenario, we demonstrate that the optimal solution to the sampling and scheduling problem can be equivalently expressed as both a threshold-based sampling strategy and a Whittle index-based scheduling policy. Notably, the Whittle index is equal to zero if and only if two conditions are satisfied: (i) the channel is idle, and (ii) the estimation error is precisely equal to the threshold in the threshold-based sampling strategy. Moreover, the methodology employed to derive threshold-based sampling strategies in the single-source, single-channel scenario plays a crucial role in establishing indexability and evaluating the Whittle index in the more intricate multi-source, multi-channel scenario. Our numerical results show that the proposed policy achieves high performance gain over the existing policies when some of the Gauss-Markov processes are highly unstable. 
    more » « less