Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Abstract We study optimal regularity and free boundary for minimizers of an energy functional arising in cohesive zone models for fracture mechanics. Under smoothness assumptions on the boundary conditions and on the fracture energy density, we show that minimizers are $$C^{1, 1/2}$$ C 1 , 1 / 2 , and that near non-degenerate points the fracture set is $$C^{1, \alpha }$$ C 1 , α , for some $$\alpha \in (0, 1)$$ α ∈ ( 0 , 1 ) .more » « less
-
null (Ed.)The goal of this work is to explain an unexpected feature of the expanding level sets of the solutions of a system where a half-plane in which reaction-diffusion phenomena take place exchanges mass with a line having a large diffusion of its own. The system was proposed by H. Berestycki, L. Rossi and the second author as a model of enhancement of biological invasions by a line of fast diffusion. It was observed numerically by A.-C. Coulon that the leading edge of the front, rather than being located on the line, was in the lower half-plane. We explain this behavior for a closely related free boundary problem. We construct travelling waves for this problem, and the analysis of their free boundary near the line confirms the predictions of the numerical simulations.more » « less
An official website of the United States government

Full Text Available