skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Abelian surfaces over totally real fields are potentially modular
Abstract We show that abelian surfaces (and consequently curves of genus 2) over totally real fields are potentially modular. As a consequence, we obtain the expected meromorphic continuation and functional equations of their Hasse–Weil zeta functions. We furthermore show the modularity of infinitely many abelian surfaces  $$A$$ A over  $${\mathbf {Q}}$$ Q with  $$\operatorname{End}_{ {\mathbf {C}}}A={\mathbf {Z}}$$ End C A = Z . We also deduce modularity and potential modularity results for genus one curves over (not necessarily CM) quadratic extensions of totally real fields.  more » « less
Award ID(s):
2001097
PAR ID:
10330800
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Publications mathématiques de l'IHÉS
Volume:
134
Issue:
1
ISSN:
0073-8301
Page Range / eLocation ID:
153 to 501
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let  ρ ¯ : G Q → GSp 4 ⁡ ( F 3 ) \overline {\rho }: G_{\mathbf {Q}} \rightarrow \operatorname {GSp}_4(\mathbf {F}_3) be a continuous Galois representation with cyclotomic similitude character. Equivalently, consider ρ ¯ \overline {\rho } to be the Galois representation associated to the  3 3 -torsion of a principally polarized abelian surface  A / Q A/\mathbf {Q} . We prove that the moduli space  A 2 ( ρ ¯ ) \mathcal {A}_2(\overline {\rho }) of principally polarized abelian surfaces  B / Q B/\mathbf {Q} admitting a symplectic isomorphism  B [ 3 ] ≃ ρ ¯ B[3] \simeq \overline {\rho } of Galois representations is never rational over  Q \mathbf {Q} when  ρ ¯ \overline {\rho } is surjective, even though it is both rational over  C \mathbf {C} and unirational over  Q \mathbf {Q} via a map of degree  6 6 . 
    more » « less
  2. We give an integrability criterion on a real-valued non-increasing function $$\unicode[STIX]{x1D713}$$ guaranteeing that for almost all (or almost no) pairs $$(A,\mathbf{b})$$ , where $$A$$ is a real $$m\times n$$ matrix and $$\mathbf{b}\in \mathbb{R}^{m}$$ , the system $$\begin{eqnarray}\Vert A\mathbf{q}+\mathbf{b}-\mathbf{p}\Vert ^{m}<\unicode[STIX]{x1D713}(T),\quad \Vert \mathbf{q}\Vert ^{n} 
    more » « less
  3. null (Ed.)
    Let $$F$$ be a totally real field in which $$p$$ is unramified. Let $$\overline{r}:G_{F}\rightarrow \text{GL}_{2}(\overline{\mathbf{F}}_{p})$$ be a modular Galois representation that satisfies the Taylor–Wiles hypotheses and is tamely ramified and generic at a place $$v$$ above $$p$$ . Let $$\mathfrak{m}$$ be the corresponding Hecke eigensystem. We describe the $$\mathfrak{m}$$ -torsion in the $$\text{mod}\,p$$ cohomology of Shimura curves with full congruence level at $$v$$ as a $$\text{GL}_{2}(k_{v})$$ -representation. In particular, it only depends on $$\overline{r}|_{I_{F_{v}}}$$ and its Jordan–Hölder factors appear with multiplicity one. The main ingredients are a description of the submodule structure for generic $$\text{GL}_{2}(\mathbf{F}_{q})$$ -projective envelopes and the multiplicity one results of Emerton, Gee and Savitt [Lattices in the cohomology of Shimura curves, Invent. Math.   200 (1) (2015), 1–96]. 
    more » « less
  4. Abstract Let Γ be a Schottky semigroup in {\mathrm{SL}_{2}(\mathbf{Z})} ,and for {q\in\mathbf{N}} , let {\Gamma(q):=\{\gamma\in\Gamma:\gamma=e~{}(\mathrm{mod}~{}q)\}} be its congruence subsemigroupof level q . Let δ denote the Hausdorff dimension of the limit set of Γ.We prove the following uniform congruence counting theoremwith respect to the family of Euclidean norm balls {B_{R}} in {M_{2}(\mathbf{R})} of radius R :for all positive integer q with no small prime factors, \#(\Gamma(q)\cap B_{R})=c_{\Gamma}\frac{R^{2\delta}}{\#(\mathrm{SL}_{2}(%\mathbf{Z}/q\mathbf{Z}))}+O(q^{C}R^{2\delta-\epsilon}) as {R\to\infty} for some {c_{\Gamma}>0,C>0,\epsilon>0} which are independent of q .Our technique also applies to give a similar counting result for the continued fractions semigroup of {\mathrm{SL}_{2}(\mathbf{Z})} ,which arises in the study of Zaremba’s conjecture on continued fractions. 
    more » « less
  5. null (Ed.)
    Abstract We study the inverse Jacobian problem for the case of Picard curves over $${\mathbb {C}}$$ C . More precisely, we elaborate on an algorithm that, given a small period matrix $$\varOmega \in {\mathbb {C}}^{3\times 3}$$ Ω ∈ C 3 × 3 corresponding to a principally polarized abelian threefold equipped with an automorphism of order 3, returns a Legendre–Rosenhain equation for a Picard curve with Jacobian isomorphic to the given abelian variety. Our method corrects a formula obtained by Koike–Weng (Math Comput 74(249):499–518, 2005) which is based on a theorem of Siegel. As a result, we apply the algorithm to obtain equations of all the isomorphism classes of Picard curves with maximal complex multiplication by the maximal order of the sextic CM-fields with class number at most $$4$$ 4 . In particular, we obtain the complete list of maximal CM Picard curves defined over $${\mathbb {Q}}$$ Q . In the appendix, Vincent gives a correction to the generalization of Takase’s formula for the inverse Jacobian problem for hyperelliptic curves given in [Balakrishnan–Ionica–Lauter–Vincent, LMS J. Comput. Math., 19(suppl. A):283-300, 2016]. 
    more » « less