skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2002561

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract How forests respond to accelerated climate change will affect the terrestrial carbon cycle. To better understand these responses, more examples are needed to assess how tree growth rates react to abrupt changes in growing‐season temperatures. Here we use a natural experiment in which a glacier's fluctuations exposed a temperate rainforest to changes in summer temperatures of similar magnitude to those predicted to occur by 2050. We hypothesized that the onset of glacier‐accentuated temperature trends would act to increase the variance in stand‐level tree growth rates, a proxy for forest net primary productivity. Instead, dendrochronological records reveal that the growth rates of five, co‐occurring conifer species became less synchronous, and this diversification of species responses acted to reduce the variance and to increase the stability of community‐wide growth rates. These results warrant further inquiry into how climate‐induced changes in tree‐growth diversity may help stabilize future ecosystem services like forest carbon storage. 
    more » « less
  2. Abstract Here, we present a 420‐year‐long winter lake level reconstruction for Lake Erie based primarily on temperature‐sensitive tree‐ring chronologies from Alaska, Oregon, and California. This well‐verified model explains more than 51% of the variance in winter lake levels over a 131‐year calibration period (1860–1990) and shows strong decadal fluctuations related to changes in sea surface temperatures in the North Pacific and the North Atlantic, which alternate in terms of their relative influence. Decadal variability is superimposed on a persistent secular lake level rise that began in the mid‐1900s coinciding with a growing influence of the Atlantic sector. In the context of the last 420 years, the instrumental period experienced extreme lake levels, with the lowest over the entire record during the Dustbowl and the highest in 2020. Fluctuations in Lake Erie water levels are primarily determined by climate, and their variability greatly impacts the region's infrastructure and ecosystems. 
    more » « less
  3. Abstract Reconstructing how biota have responded to fast‐paced warming events in the past can help predict their responses to rapid climate changes in the future. Here we suggest that natural communities located near glaciers are useful laboratories for this purpose as they experienced climate changes accentuated by past ice‐margin fluctuations. By reconstructing an Alaskan glacier's position over a 166‐year period and measuring the periglacial air temperatures over the last 3 years, we estimate that the adjacent temperate rainforest episodically cooled and warmed by 0.5–0.7°C/decade. These rates of change exceed most historical warming trends measured elsewhere on Earth and are comparable to the rates of climate warming predicted for the next century. The ring‐width responses of yellow‐cedar trees growing at varying distances from the ice edge illustrate the potential for using periglacial ecosystems to predict how forests may respond to rapid warming in the future. 
    more » « less
  4. Abstract Two large volcanic eruptions contributed to extreme cold temperatures during the early 1800s, one of the coldest phases of the Little Ice Age. While impacts from the massive 1815 Tambora eruption in Indonesia are relatively well‐documented, much less is known regarding an unidentified volcanic event around 1809. Here, we describe the spatial extent, duration, and magnitude of cold conditions following this eruption in northwestern North America using a high‐resolution network of tree‐ring records that capture past warm‐season temperature variability. Extreme and persistent cold temperatures were centered around the Gulf of Alaska, the adjacent Wrangell‐St Elias Mountains, and the southern Yukon, while cold anomalies diminished with distance from this core region. This distinct spatial pattern of temperature anomalies suggests that a weak Aleutian Low and conditions similar to a negative phase of the Pacific Decadal Oscillation could have contributed to regional cold extremes after the 1809 eruption. 
    more » « less
  5. The Northwest Coast of North America stretches 4000 km from Bering Strait to Washington State. Here we review the history of glaciation, sea level, oceanography, and climate along the Northwest Coast and in the subarctic Pacific Ocean during the Last Glacial Maximum and deglaciation. The period of interest is Marine Isotope Stage 2 between ca. 29,000 calendar years ago (29 ka) and 11,700 calendar years ago (11.7 ka). The glacial history of the Northwest Coast involved multiple glacial systems responding independently to latitudinal variations in climate caused by changes in the North American ice sheets and in the tropical ocean-atmosphere system. Glaciers reached their maximum extents 1–5 kyrs later along the Northwest Coast than did large sectors of the Laurentide and Fennoscandian Ice Sheets. Local, Last Glacial Maxima were reached in a time-transgressive, north to south sequence between southwestern Alaska and Puget Sound. The history of relative sea level along the Northwest Coast during Marine Isotope Stage 2 was complex because of rapid isostatic adjustments by a thin lithosphere to these time-transgressive glacial fluctuations. Multiple lines of evidence suggest Bering Strait was first flooded by the sea after 11 ka and that it probably did not assume its present-day oceanographic functions until after 9 ka. The coldest intervals occurred during Heinrich Event 2 (ca. 26–23.5 ka), again between ca. 23 and 21.5 ka, and during Heinrich Event 1 (ca. 18–15 ka). During these times, mean annual sea surface temperatures cooled by 5o to 8o C in the Gulf of Alaska, and glacial equilibrium-line altitudes fell below present sea level in southern Alaska and along the Aleutian Island chain. Sea ice episodically expanded across the subarctic Pacific in winter. Oceanographic changes in the Gulf of Alaska tracked variations in the vigor of the Asian Summer Monsoon. The deglaciation of the Northwest Coast may have served as the trigger for global climate changes during deglaciation. Starting ca. 21 ka, marine-based glaciers there were increasingly destabilized by rising eustatic sea level and influxes of freshwater and heat associated with the rejuvenation of the Asian Summer Monsoon. Rapid retreat of marine-based glaciers began ca. 19 ka and released large numbers of ice bergs and vast amounts of freshwater into the Northeast Pacific. Resultant cooling of the North Pacific may have been teleconnected to the North Atlantic through the atmosphere, where it slowed Atlantic Meridional Overturning Circulation and initiated the global effects of Heinrich Event 1, ca. 18–15 ka. During the Younger Dryas, ca. 12.8–11.7 ka, mean annual sea surface temperatures were 4o to 6o C cooler than today in the Gulf of Alaska, and sea ice again expanded across the subarctic Pacific in winter. Conditions of extreme seasonality characterized by cold, dry winters and warm, steadily ameliorating summers caused by the southward diversion of the Aleutian Low in winter may explain the previously enigmatic records of Younger Dryas climate along the Northwest Coast. 
    more » « less
  6. In Southeast Alaska, many stands of yellow-cedar (Callitropsis nootkatensis (D. Don) Oerst. ex D.P. Little; hereinafter “YC”) contain numerous standing, dead snags. Snag-age estimates based on tree morphology have been used to support the interpretation that a warming climate after ca. 1880 has triggered unprecedented YC dieback. Here, we present new estimates of YC snag longevity by cross-dating 61 snags with morphologies that suggest they stood dead for extended periods. All but four of these snags have lost their outermost rings to decay, so we estimate when they died using a new method based on wood-ablation rates measured in six living trees that display partial cambial dieback. The results indicate that ∼59% of YC snags that lost their branches to decay (Class 5 snags) have remained standing for >200 years, and some for as long as 450 years (snag longevity mean ± SD: 233 ± 92 years). These findings, along with supporting evidence from historical photos, dendrochronology, and snag-morphology surveys in the published literature suggest that episodes of YC dieback also occurred before 1880 and before significant anthropogenic warming began. The roles played by climate change in these earlier dieback events remain to be further explored. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)
  9. null (Ed.)
  10. null (Ed.)