Abstract Continued global warming is expected to result in reduced precipitation and a drier climate in Central America. Projections of future changes are highly uncertain, however, due to the spatial resolution limitations of models and insufficient observational data coverage across space and time. Paleoclimate proxy data are therefore critical for understanding regional climate responses during times of global climate reorganization. Here we present two lake‐sediment based records of precipitation variability in Guatemala along with a synthesis of Central American hydroclimate records spanning the last millennium (800–2000 CE). The synthesis reveals that regional climate changes have been strikingly heterogeneous, even over relatively short distances. Our analysis further suggests that shifts in the mean position of the Intertropical Convergence Zone, which have been invoked by numerous studies to explain variability in Central American and circum‐Caribbean proxy records, cannot alone explain the observed pattern of hydroclimate variability. Instead, interactions between several ocean‐atmosphere processes and their disparate influences across variable topography appear to have resulted in complex precipitation responses. These complexities highlight the difficulty of reconstructing past precipitation changes across Central America and point to the need for additional paleo‐record development and analysis before the relationships between external forcing and hydroclimate change can be robustly determined. Such efforts should help anchor model‐based predictions of future responses to continued global warming.
more »
« less
Ecosystems at Glacier Margins Can Serve as Climate‐Change Laboratories
Abstract Reconstructing how biota have responded to fast‐paced warming events in the past can help predict their responses to rapid climate changes in the future. Here we suggest that natural communities located near glaciers are useful laboratories for this purpose as they experienced climate changes accentuated by past ice‐margin fluctuations. By reconstructing an Alaskan glacier's position over a 166‐year period and measuring the periglacial air temperatures over the last 3 years, we estimate that the adjacent temperate rainforest episodically cooled and warmed by 0.5–0.7°C/decade. These rates of change exceed most historical warming trends measured elsewhere on Earth and are comparable to the rates of climate warming predicted for the next century. The ring‐width responses of yellow‐cedar trees growing at varying distances from the ice edge illustrate the potential for using periglacial ecosystems to predict how forests may respond to rapid warming in the future.
more »
« less
- PAR ID:
- 10370075
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 13
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The calving of A‐68, the 5,800‐km2, 1‐trillion‐ton iceberg shed from the Larsen C Ice Shelf in July 2017, is one of over 10 significant ice‐shelf loss events in the past few decades resulting from rapid warming around the Antarctic Peninsula. The rapid thinning, retreat, and collapse of ice shelves along the Antarctic Peninsula are harbingers of warming effects around the entire continent. Ice shelves cover more than 1.5 million km2and fringe 75% of Antarctica's coastline, delineating the primary connections between the Antarctic continent, the continental ice, and the Southern Ocean. Changes in Antarctic ice shelves bring dramatic and large‐scale modifications to Southern Ocean ecosystems and continental ice movements, with global‐scale implications. The thinning and rate of future ice‐shelf demise is notoriously unpredictable, but models suggest increased shelf‐melt and calving will become more common. To date, little is known about sub‐ice‐shelf ecosystems, and our understanding of ecosystem change following collapse and calving is predominantly based on responsive science once collapses have occurred. In this review, we outline what is known about (a) ice‐shelf melt, volume loss, retreat, and calving, (b) ice‐shelf‐associated ecosystems through sub‐ice, sediment‐core, and pre‐collapse and post‐collapse studies, and (c) ecological responses in pelagic, sympagic, and benthic ecosystems. We then discuss major knowledge gaps and how science might address these gaps. This article is categorized under:Climate, Ecology, and Conservation > Modeling Species and Community Interactionsmore » « less
-
Abstract Direct measurements of erosional response to past climate change are scarce, but mid‐latitude landscapes can record how shifts between cold and warm periods altered erosion outside glacial margins. To study hillslope responses to periglaciation, we measured bulk geochemistry and cosmogenic10Be and26Al concentrations in colluvium and weathered bedrock in an 18 m regolith core from Bear Meadows, Pennsylvania, ∼100 km south of maximum glacial extent. Using core lithology, cosmogenic nuclide concentrations, and regional10Be‐derived erosion rates, we show the onset of 100‐Kyr glacial cycles at the Mid‐Pleistocene Transition (1.2–0.7 Ma) instigated multiple periglacial episodes in central Appalachia, increasing erosion rates compared to the relatively warmer Neogene. Our results show the higher efficiency of periglacial versus temperate erosion processes and highlight a pervasive Pleistocene periglacial erosion signal preserved in the10Be inventory of surface sediments in central Appalachia, where erosion rates are slow enough to integrate previous cold‐climate processes.more » « less
-
Abstract Although perennially ice‐covered Antarctic lakes have experienced variable ice thicknesses over the past several decades, future ice thickness trends and associated aquatic biological responses under projected global warming remain unknown. Heat stored in the water column in chemically stratified Antarctic lakes that have middepth temperature maxima can significantly influence the ice thickness trends via upward heat flux to the ice/water interface. We modeled the ice thickness of the west lobe of Lake Bonney, Antarctica, based on possible future climate scenarios utilizing a 1D thermodynamic model that accounts for surface radiative fluxes as well as the heat flux associated with the temperature evolution of the water column. Model results predict that the ice cover of Lake Bonney will shift from perennial to seasonal within one to four decades, a change that will drastically influence ecosystem processes within the lake.more » « less
-
Abstract The recent Arctic sea ice loss is a key driver of the amplified surface warming in the northern high latitudes, and simultaneously a major source of uncertainty in model projections of Arctic climate change. Previous work has shown that the spread in model predictions of future Arctic amplification (AA) can be traced back to the inter-model spread in simulated long-term sea ice loss. We demonstrate that the strength of future AA is further linked to the current climate’s, observable sea ice state across the multi-model ensemble of the 6th Coupled Model Intercomparison Project (CMIP6). The implication is that the sea-ice climatology sets the stage for long-term changes through the 21st century, which mediate the degree by which Arctic warming is amplified with respect to global warming. We determine that a lower base-climate sea ice extent and sea ice concentration (SIC) in CMIP6 models enable stronger ice melt in both future climate and during the seasonal cycle. In particular, models with lower Arctic-mean SIC project stronger future ice loss and a more intense seasonal cycle in ice melt and growth. Both processes systemically link to a larger future AA across climate models. These results are manifested by the role of climate feedbacks that have been widely identified as major drivers of AA. We show in particular that models with low base-climate SIC predict a systematically stronger warming contribution through both sea-ice albedo feedback and temperature feedbacks in the future, as compared to models with high SIC. From our derived linear regressions in conjunction with observations, we estimate a 21st-century AA over sea ice of 2.47–3.34 with respect to global warming. Lastly, from the tight relationship between base-climate SIC and the projected timing of an ice-free September, we predict a seasonally ice-free Arctic by mid-century under a high-emission scenario.more » « less
An official website of the United States government
