skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2003081

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gaussian Processes (GP) are a powerful framework for modeling expensive black-box functions and have thus been adopted for various challenging modeling and optimization problems. In GP-based modeling, we typically default to a stationary covariance kernel to model the underlying function over the input domain, but many real-world applications, such as controls and cyber-physical system safety, often require modeling and optimization of functions that are locally stationary and globally non-stationary across the domain; using standard GPs with a stationary kernel often yields poor modeling performance in such scenarios. In this paper, we propose a novel modeling technique called Class-GP (Class Gaussian Process) to model a class of heterogeneous functions, i.e., non-stationary functions which can be divided into locally stationary functions over the partitions of input space with one active stationary function in each partition. We provide theoretical insights into the modeling power of Class-GP and demonstrate its benefits over standard modeling techniques via extensive empirical evaluations. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)