Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bragg gratings offer high-performance filtering and routing of light on-chip through a periodic modulation of a waveguide’s effective refractive index. Here, we model and experimentally demonstrate the use of Sb2Se3, a nonvolatile and transparent phase-change material, to tune the resonance conditions in two devices which leverage periodic Bragg gratings—a stopband filter and Fabry-Perot cavity. Through simulations, we show that similar refractive indices between silicon and amorphous Sb2Se3can be used to induce broadband transparency, while the crystalline state can enhance the index contrast in these Bragg devices. Our experimental results show the promise and limitations of this design approach and highlight specific fabrication challenges which need to be addressed in future implementations.more » « less
-
Abstract The exponential growth of information stored in data centers and computational power required for various data-intensive applications, such as deep learning and AI, call for new strategies to improve or move beyond the traditional von Neumann architecture. Recent achievements in information storage and computation in the optical domain, enabling energy-efficient, fast, and high-bandwidth data processing, show great potential for photonics to overcome the von Neumann bottleneck and reduce the energy wasted to Joule heating. Optically readable memories are fundamental in this process, and while light-based storage has traditionally (and commercially) employed free-space optics, recent developments in photonic integrated circuits (PICs) and optical nano-materials have opened the doors to new opportunities on-chip. Photonic memories have yet to rival their electronic digital counterparts in storage density; however, their inherent analog nature and ultrahigh bandwidth make them ideal for unconventional computing strategies. Here, we review emerging nanophotonic devices that possess memory capabilities by elaborating on their tunable mechanisms and evaluating them in terms of scalability and device performance. Moreover, we discuss the progress on large-scale architectures for photonic memory arrays and optical computing primarily based on memory performance.more » « less
-
Phase change chalcogenides such as Ge2Sb2Te5(GST) have recently enabled advanced optical devices for applications such as in-memory computing, reflective displays, tunable metasurfaces, and reconfigurable photonics. However, designing phase change optical devices with reliable and efficient electrical control is challenging due to the requirements of both high amorphization temperatures and extremely fast quenching rates for reversible switching. Here, we use a Multiphysics simulation framework to model three waveguide-integrated microheaters designed to switch optical phase change materials. We explore the effects of geometry, doping, and electrical pulse parameters to optimize the switching speed and minimize energy consumption in these optical devices.more » « less
-
null (Ed.)Abstract A fascinating photonic platform with a small device scale, fast operating speed, as well as low energy consumption is two-dimensional (2D) materials, thanks to their in-plane crystalline structures and out-of-plane quantum confinement. The key to further advancement in this research field is the ability to modify the optical properties of the 2D materials. The modifications typically come from the materials themselves, for example, altering their chemical compositions. This article reviews a comparably less explored but promising means, through engineering the photonic surroundings. Rather than modifying materials themselves, this means manipulates the dielectric and metallic environments, both uniform and nanostructured, that directly interact with the materials. For 2D materials that are only one or a few atoms thick, the interaction with the environment can be remarkably efficient. This review summarizes the three degrees of freedom of this interaction: weak coupling, strong coupling, and multifunctionality. In addition, it reviews a relatively timing concept of engineering that directly applied to the 2D materials by patterning. Benefiting from the burgeoning development of nanophotonics, the engineering of photonic environments provides a versatile and creative methodology of reshaping light–matter interaction in 2D materials.more » « less
An official website of the United States government
