skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photonic (computational) memories: tunable nanophotonics for data storage and computing
Abstract The exponential growth of information stored in data centers and computational power required for various data-intensive applications, such as deep learning and AI, call for new strategies to improve or move beyond the traditional von Neumann architecture. Recent achievements in information storage and computation in the optical domain, enabling energy-efficient, fast, and high-bandwidth data processing, show great potential for photonics to overcome the von Neumann bottleneck and reduce the energy wasted to Joule heating. Optically readable memories are fundamental in this process, and while light-based storage has traditionally (and commercially) employed free-space optics, recent developments in photonic integrated circuits (PICs) and optical nano-materials have opened the doors to new opportunities on-chip. Photonic memories have yet to rival their electronic digital counterparts in storage density; however, their inherent analog nature and ultrahigh bandwidth make them ideal for unconventional computing strategies. Here, we review emerging nanophotonic devices that possess memory capabilities by elaborating on their tunable mechanisms and evaluating them in terms of scalability and device performance. Moreover, we discuss the progress on large-scale architectures for photonic memory arrays and optical computing primarily based on memory performance.  more » « less
Award ID(s):
2105972 2028624 2003325
PAR ID:
10335695
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nanophotonics
Volume:
0
Issue:
0
ISSN:
2192-8606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Big data computing applications such as deep learning and graph analytic usually incur a large amount of data movements. Deploying such applications on conventional von Neumann architecture that separates the processing units and memory components likely leads to performance bottleneck due to the limited memory bandwidth. A common approach is to develop architecture and memory co-design methodologies to overcome the challenge. Our research follows the same strategy by leveraging resistive memory (ReRAM) to further enhance the performance and energy efficiency. Specifically, we employ the general principles behind processing-in-memory to design efficient ReRAM based accelerators that support both testing and training operations. Related circuit and architecture optimization will be discussed too. 
    more » « less
  2. Convolutional Neural Networks (CNNs) are widely used due to their effectiveness in various AI applications such as object recognition, speech processing, etc., where the multiply-and-accumulate (MAC) operation contributes to ∼95% of the computation time. From the hardware implementation perspective, the performance of current CMOS-based MAC accelerators is limited mainly due to their von-Neumann architecture and corresponding limited memory bandwidth. In this way, silicon photonics has been recently explored as a promising solution for accelerator design to improve the speed and power-efficiency of the designs as opposed to electronic memristive crossbars. In this work, we briefly study recent silicon photonics accelerators and take initial steps to develop an open-source and adaptive crossbar architecture simulator for that. Keeping the original functionality of the MNSIM tool [1], we add a new photonic mode that utilizes the pre-existing algorithm to work with a photonic Phase Change Memory (pPCM) based crossbar structure. With inputs from the CNN's topology, the accelerator configuration, and experimentally-benchmarked data, the presented simulator can report the optimal crossbar size, the number of crossbars needed, and the estimation of total area, power, and latency. 
    more » « less
  3. Computational storage adds computing to storage devices, providing potential benefits in offload, data-reduction, and lower energy. Successful computational SSD architectures should match growing flash bandwidth, which in turn requires high SSD DRAM memory bandwidth. This creates a memory wall scaling problem, resulting from SSDs’ stringent power and cost constraints. A survey of recent computational SSD research shows that many computational storage offloads are suited to stream computing. To exploit this opportunity, we propose a novel general-purpose computational SSD and core architecture, called ASSASIN (Architecture Support for Stream computing to Accelerate computatIoNal Storage). ASSASIN provides a unified set of compute engines between SSD DRAM and the flash array. This eliminates the SSD DRAM bottleneck by enabling direct computing on flash data streams. ASSASIN further employs a crossbar to achieve performance even when flash data layout is uneven and preserve independence for page layout decisions in the flash translation layer. With stream buffers and scratchpad memories, ASSASIN core’s memory hierarchy and instruction set extensions provide superior low-latency access at low-power and effectively keep streaming flash data out of the in-SSD cache-DRAM memory hierarchy, thereby solving the memory wall. Evaluation shows that ASSASIN delivers 1.5x - 2.4x speedup for offloaded functions compared to state-of-the-art computational SSD architectures. Further, ASSASIN’s streaming approach yields 2.0x power efficiency and 3.2x area efficiency improvement. And these performance benefits at the level of computational SSDs translate to 1.1x - 1.5x end-to-end speedups on data analytics workloads. 
    more » « less
  4. In this paper we propose a Highly Flexible InMemory (HieIM) computing platform using STT MRAM, which can be leveraged to implement Boolean logic functions without sacrificing memory functionality. It could pre-process data within memory to further reduce power hungry long distance communication between memory and processing units as in Von-Neumann computing system. HieIM can implement all the Boolean logic functions (AND/NAND, OR/NOR, XOR/XNOR) between any two cells in the same memory array, thus overcoming the `operand locality' problem in contemporary in-memory computing platform designs. To investigate the performance of HieIM, we test in-memory bulk bit-wise Boolean logic operations using different vector datasets, which shows ~ 8x energy saving and ~ 5x speedup compared to recent DRAM based in-memory computing platform. We further implement an in-memory data encryption engine design based on HieIM as another case study. With AES algorithm, it shows 51.5% and 68.9% lower energy consumption compared to CMOS-ASIC and CMOL based implementations, respectively. 
    more » « less
  5. Optical photons are powerful carriers of quantum information, which can be delivered in free space by satellites or in fibers on the ground over long distances. Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing. Quantum optical memories are devices designed to store quantum information in the form of stationary excitations, such as atomic coherence, and are capable of coherently mapping these excitations to flying qubits. Quantum memories can effectively store and manipulate quantum states, making them indispensable elements in future long-distance quantum networks. Over the past two decades, quantum optical memories with high fidelities, high efficiencies, long storage times, and promising multiplexing capabilities have been developed, especially at the single-photon level. In this review, we introduce the working principles of commonly used quantum memory protocols and summarize the recent advances in quantum memory demonstrations. We also offer a vision for future quantum optical memory devices that may enable entanglement distribution over long distances. 
    more » « less