skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Microfluidic tools to model, monitor, and modulate the gut–brain axis
The gut–brain axis (GBA) connects the gastrointestinal tract and the central nervous system (CNS) via the peripheral nervous system and humoral (e.g., circulatory and lymphatic system) routes. The GBA comprises a sophisticated interaction between various mammalian cells, gut microbiota, and systemic factors. This interaction shapes homeostatic and pathophysiological processes and plays an important role in the etiology of many disorders including neuropsychiatric conditions. However, studying the underlying processes of GBA in vivo, where numerous confounding factors exist, is challenging. Furthermore, conventional in vitro models fall short of capturing the GBA anatomy and physiology. Microfluidic platforms with integrated sensors and actuators are uniquely positioned to enhance in vitro models by representing the anatomical layout of cells and allowing to monitor and modulate the biological processes with high spatiotemporal resolution. Here, we first briefly describe microfluidic technologies and their utility in modeling the CNS, vagus nerve, gut epithelial barrier, blood–brain barrier, and their interactions. We then discuss the challenges and opportunities for each model, including the use of induced pluripotent stem cells and incorporation of sensors and actuator modalities to enhance the capabilities of these models. We conclude by envisioning research directions that can help in making the microfluidics-based GBA models better-suited to provide mechanistic insight into pathophysiological processes and screening therapeutics.  more » « less
Award ID(s):
2152260 2003849
PAR ID:
10609816
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Biomicrofluidics
Volume:
19
Issue:
2
ISSN:
1932-1058
Page Range / eLocation ID:
021301
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The blood–brain barrier (BBB) is a vital structure for maintaining homeostasis between the blood and the brain in the central nervous system (CNS). Biomolecule exchange, ion balance, nutrition delivery, and toxic molecule prevention rely on the normal function of the BBB. The dysfunction and the dysregulation of the BBB leads to the progression of neurological disorders and neurodegeneration. Therefore, in vitro BBB models can facilitate the investigation for proper therapies. As the demand increases, it is urgent to develop a more efficient and more physiologically relevant BBB model. In this review, the development of the microfluidics platform for the applications in neuroscience is summarized. This article focuses on the characterizations of in vitro BBB models derived from human stem cells and discusses the development of various types of in vitro models. The microfluidics-based system and BBB-on-chip models should provide a better platform for high-throughput drug-screening and targeted delivery. 
    more » « less
  2. Abstract Delivering cargo to the central nervous system (CNS) remains a pharmacological challenge. For infectious diseases such as HIV, the CNS acts as a latent reservoir that is inadequately managed by systemic antiretrovirals (ARTs). ARTs thus cannot eradicate HIV, and given CNS infection, patients experience neurological deficits collectively referred to as “neuroHIV”. Herein, the development of bioinspired ionic liquid‐coated nanoparticles (IL‐NPs) for in situ hitchhiking on red blood cells (RBCs) is reported, which enables 48% brain delivery of intracarotid arterial‐ infused cargo. Moreover, IL choline trans‐2‐hexenoate (CA2HA 1:2) demonstrates preferential accumulation in parenchymal microglia over endothelial cells post‐delivery. This study further demonstrates successful loading of abacavir (ABC), an ART that is challenging to encapsulate, into IL‐NPs, and verifies retention of antiviral efficacy in vitro. IL‐NPs are not cytotoxic to primary human peripheral blood mononuclear cells (PBMCs) and the CA2HA 1:2 coating itself confers notable anti‐viremic capacity. In addition, in vitro cell culture assays show markedly increased uptake of IL‐NPs into neural cells compared to bare PLGA nanoparticles. This work debuts bioinspired ionic liquids as promising nanoparticle coatings to assist CNS biodistribution and has the potential to revolutionize the delivery of cargos (i.e., drugs, viral vectors) through compartmental barriers such as the blood‐brain‐barrier (BBB). 
    more » « less
  3. null (Ed.)
    Autism Spectrum Disorder (ASD) is a neurodevelopmental disease originating from combined genetic and environmental factors. Post-mortem human studies and some animal ASD models have shown brain neuroinflammation, oxidative stress, and changes in blood–brain barrier (BBB) integrity. However, the signaling pathways leading to these inflammatory findings and vascular alterations are currently unclear. The BBB plays a critical role in controlling brain homeostasis and immune response. Its dysfunction can result from developmental genetic abnormalities or neuroinflammatory processes. In this review, we explore the role of the Sonic Hedgehog/Wingless-related integration site (Shh/Wnt) pathways in neurodevelopment, neuroinflammation, and BBB development. The balance between Wnt-β-catenin and Shh pathways controls angiogenesis, barriergenesis, neurodevelopment, central nervous system (CNS) morphogenesis, and neuronal guidance. These interactions are critical to maintain BBB function in the mature CNS to prevent the influx of pathogens and inflammatory cells. Genetic mutations of key components of these pathways have been identified in ASD patients and animal models, which correlate with the severity of ASD symptoms. Disruption of the Shh/Wnt crosstalk may therefore compromise BBB development and function. In turn, impaired Shh signaling and glial activation may cause neuroinflammation that could disrupt the BBB. Elucidating how ASD-related mutations of Shh/Wnt signaling could cause BBB leaks and neuroinflammation will contribute to our understanding of the role of their interactions in ASD pathophysiology. These observations may provide novel targeted therapeutic strategies to prevent or alleviate ASD symptoms while preserving normal developmental processes. 
    more » « less
  4. The blood–brain barrier (BBB) is a multicellular construct that regulates the diffusion and transport of metabolites, ions, toxins, and inflammatory mediators into and out of the central nervous system (CNS). Its integrity is essential for proper brain physiology, and its breakdown has been shown to contribute to neurological dysfunction. The BBB in vertebrates exists primarily through the coordination between endothelial cells, pericytes, and astrocytes, while invertebrates, which lack a vascularized circulatory system, typically have a barrier composed of glial cells that separate the CNS from humoral fluids. Notably, the invertebrate barrier is molecularly and functionally analogous to the vertebrate BBB, and the fruit fly, Drosophila melanogaster, is increasingly recognized as a useful model system in which to investigate barrier function. The most widely used technique to assess barrier function in the fly is the dye-exclusion assay, which involves monitoring the infiltration of a fluorescent-coupled dextran into the brain. In this study, we explore analytical and technical considerations of this procedure that yield a more reliable assessment of barrier function, and we validate our findings using a traumatic injury model. Together, we have identified parameters that optimize the dye-exclusion assay and provide an alternative framework for future studies examining barrier function in Drosophila. 
    more » « less
  5. Abstract BackgroundVagal afferent neurons represent the key neurosensory branch of the gut-brain axis, which describes the bidirectional communication between the gastrointestinal system and the brain. These neurons are important for detecting and relaying sensory information from the periphery to the central nervous system to modulate feeding behavior, metabolism, and inflammation. Confounding variables complicate the process of isolating the role of the vagal afferents in mediating these physiological processes. Therefore, we developed a microfluidic model of the sensory branch of the gut-brain axis. We show that this microfluidic model successfully compartmentalizes the cell body and neurite terminals of the neurons, thereby simulates the anatomical layout of these neurons to more accurately study physiologically-relevant processes. MethodsWe implemented a primary rat vagal afferent neuron culture into a microfluidic platform consisting of two concentric chambers interconnected with radial microchannels. The microfluidic platform separated cell bodies from neurite terminals of vagal afferent neurons. We then introduced physiologically-relevant gastrointestinal effector molecules at the nerve terminals and assessed their retrograde transport along the neurite or capacity to elicit an electrophysiological response using live cell calcium imaging. ResultsThe angle of microchannel outlets dictated the probability of neurites growing into a chamber versus tracking along chamber walls. When the neurite terminals were exposed to fluorescently-labeled cholera toxin subunit B, the proteins were taken up and retrogradely transported along the neurites over the course of 24 h. Additionally, mechanical perturbation (e.g., rinsing) of the neurite terminals significantly increased intracellular calcium concentration in the distal soma. Finally, membrane-displayed receptor for capsaicin was expressed and trafficked along newly projected neurites, as revealed by confocal microscopy. ConclusionsIn this work, we developed a microfluidic device that can recapitulate the anatomical layout of vagal afferent neurons in vitro. We demonstrated two physiologically-relevant applications of the platforms: retrograde transport and electrophysiological response. We expect this tool to enable controlled studies on the role of vagal afferent neurons in the gut-brain axis. 
    more » « less