The landscape of research in science and engineering is heavily reliant on computation and data processing. There is continued and expanded usage by disciplines that have historically used advanced computing resources, new usage by disciplines that have not traditionally used HPC, and new modalities of the usage in Data Science, Machine Learning, and other areas of AI. Along with these new patterns have come new advanced computing resource methods and approaches, including the availability of commercial cloud resources. The Coalition for Academic Scientific Computation (CASC) has long been an advocate representing the needs of academic researchers using computational resources, sharing best practices and offering advice to create a national cyberinfrastructure to meet US science, engineering, and other academic computing needs. CASC has completed the first of what we intend to be an annual survey of academic cloud and data center usage and practices in analyzing return on investment in cyberinfrastructure. Critically important findings from this first survey include the following: many of the respondents are engaged in some form of analysis of return in research computing investments, but only a minority currently report the results of such analyses to their upper-level administration. Most respondents are experimenting with use of commercial cloud resources but no respondent indicated that they have found use of commercial cloud services to create financial benefits compared to their current methods. There is clear correlation between levels of investment in research cyberinfrastructure and the scale of both cpu core-hours delivered and the financial level of supported research grants. Also interesting is that almost every respondent indicated that they participate in some sort of national cooperative or nationally provided research computing infrastructure project and most were involved in academic computing-related organizations, indicating a high degree of engagement by institutions of higher education in building and maintaining national research computing ecosystems. Institutions continue to evaluate cloud-based HPC service models, despite having generally concluded that so far cloud HPC is too expensive to use compared to their current methods.
more »
« less
This content will become publicly available on August 21, 2026
Application of the cyberinfrastructure production function model to R1 institutions
High-performance computing (HPC) is widely used in higher education for modeling, simulation, and AI applications. A critical piece of infrastructure with which to secure funding, attract and retain faculty, and teach students, supercomputers come with high capital and operating costs that must be considered against other competing priorities. This study applies the concepts of the production function model from economics with two thrusts: (1) to evaluate if previous research on building a model for quantifying the value of investment in research computing is generalizable to a wider set of universities, and (2) to define a model with which to capacity plan HPC investment, based on institutional production—inverting the production function. We show that the production function model does appear to generalize, showing positive institutional returns from the investment in computing resources and staff. We do, however, find that the relative relationships between model inputs and outputs vary across institutions, which can often be attributed to understandable institution-specific factors.
more »
« less
- PAR ID:
- 10636433
- Editor(s):
- Zhang, Yi
- Publisher / Repository:
- Frontiers in Research Metrics and Analytics
- Date Published:
- Journal Name:
- Frontiers in Research Metrics and Analytics
- Volume:
- 10
- ISSN:
- 2504-0537
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Although high-performance computing (HPC) systems have been scaled to meet the exponentially growing demand for scientific computing, HPC performance variability remains a major challenge in computer science. Statistically, performance variability can be characterized by a distribution. Predicting performance variability is a critical step in HPC performance variability management. In this article, we propose a new framework to predict performance distributions. The proposed framework is a modified Gaussian process that can predict the distribution function of the input/output (I/O) throughput under a specific HPC system configuration. We also impose a monotonic constraint so that the predicted function is nondecreasing, which is a property of the cumulative distribution function. Additionally, the proposed model can incorporate both quantitative and qualitative input variables. We predict the HPC I/O distribution using the proposed method for the IOzone variability data. Data analysis results show that our framework can generate accurate predictions, and outperform existing methods. We also show how the predicted functional output can be used to generate predictions for a scalar summary of the performance distribution, such as the mean, standard deviation, and quantiles. Our prediction results can further be used for HPC system variability monitoring and optimization. This article has online supplementary materials.more » « less
-
High Performance Computing (HPC) is the ability to process data and perform complex calculations at extremely high speeds. Current HPC platforms can achieve calculations on the order of quadrillions of calculations per second with quintillions on the horizon. The past three decades witnessed a vast increase in the use of HPC across different scientific, engineering and business communities, for example, sequencing the genome, predicting climate changes, designing modern aerodynamics, or establishing customer preferences. Although HPC has been well incorporated into science curricula such as bioinformatics, the same cannot be said for most computing programs. This working group will explore how HPC can make inroads into computer science education, from the undergraduate to postgraduate levels. The group will address research questions designed to investigate topics such as identifying and handling barriers that inhibit the adoption of HPC in educational environments, how to incorporate HPC into various curricula, and how HPC can be leveraged to enhance applied critical thinking and problem-solving skills. Four deliverables include: (1) a catalog of core HPC educational concepts, (2) HPC curricula for contemporary computing needs, such as in artificial intelligence, cyberanalytics, data science and engineering, or internet of things, (3) possible infrastructures for implementing HPC coursework, and (4) HPC-related feedback to the CC2020 project.more » « less
-
PEARC'25 (Ed.)The Rosen Center for Advanced Computing at Purdue University has recently released two Generative AI inference tools, AnvilGPT and Purdue GenAI Studio, to the research and campus communities. These services support over 1000 users who use 10+ open-source GenAI models to aid their work. Building on HPC’s long history of using open-source tools, these services are based on customized open-source frameworks and hosted entirely on-prem. This pa- per argues that building custom GenAI services from open-source frameworks is a scalable and cost-effective solution for providing access to Generative AI models. This paper shares the methodology and resources required to develop and host these services and seeks to be a resource for other research computing centers that wish to leverage their HPC investment to create similar services.more » « less
-
Summary High performance computing (HPC) has led to remarkable advances in science and engineering and has become an indispensable tool for research. Unfortunately, HPC use and adoption by many researchers is often hindered by the complex way these resources are accessed. Indeed, while the web has become the dominant access mechanism for remote computing services in virtually every computing area, HPC is a notable exception. Open OnDemand is an open source project negating this trend by providing web‐based access to HPC resources (https://openondemand.org). This article describes the challenges to adoption and other lessons learned over the 3‐year project that may be relevant to other science gateway projects. We end with a description of future plans the project team has during the Open OnDemand 2.0 project including specific developments in machine learning and GPU monitoring.more » « less
An official website of the United States government
