Abstract The proton–alpha drift instability is a possible mechanism of the alpha-particle deceleration and the resulting proton heating in the solar wind. We present hybrid numerical simulations of this instability with particle-in-cell ions and a quasi-neutralizing electron fluid for typical conditions at 1 au. For the parameters used in this paper, we find that fast magnetosonic unstable modes propagate only in the direction opposite to the alpha-particle drift and do not produce the perpendicular proton heating necessary to accelerate the solar wind. Alfvén modes propagate in both directions and heat the protons perpendicularly to the mean magnetic field. Despite being driven by the alpha temperature anisotropy, the Alfvén instability also extracts the energy from the bulk motion of the alpha particles. In the solar wind, the instabilities operate in a turbulent ambient medium. We show that the turbulence suppresses the Alfvén instability but the perpendicular proton heating persists. Unlike a static nonuniform background, the turbulence does not invert the sense of the proton heating associated with the fast magnetosonic instability and it remains preferentially parallel.
more »
« less
Ion Heating by a Fast Magnetosonic Turbulence in the Solar Corona
Abstract Observational data at heliocentric distances of tens of solar radii suggest that fast magnetosonic modes make up a considerable fraction of the solar wind fluctuations. Furthermore, this fraction appears to increase closer to the Sun. We carry out three-dimensional kinetic simulations with particle ions and fluid electrons to evaluate the proton and alpha-particle heating produced by the damping of the fast waves in the solar corona. Realistic parameters at 5 solar radii, including the fluctuation amplitude, are used. We show that, due to the cyclotron resonance, the alphas are heated preferentially perpendicularly to the magnetic field and much more strongly than the protons. The presence of the alpha particles alters the energy partition by reducing the heating of the protons. Nevertheless, the proton heating is sufficient to account for the solar wind acceleration.
more »
« less
- PAR ID:
- 10501781
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 966
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 1
- Size(s):
- Article No. 1
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Context. The Parker Solar Probe (PSP) measures solar wind protons and electrons near the Sun. To study the thermodynamic properties of electrons and protons, we include electron effects, such as distributed turbulent heating between protons and electrons, Coulomb collisions between protons and electrons, and heat conduction of electrons. Aims. We develop a general theoretical model of nearly incompressible magnetohydrodynamic (NI MHD) turbulence coupled with a solar wind model that includes electron pressure and heat flux. Methods. It is important to note that 60% of the turbulence energy is assigned to proton heating and 40% to electron heating. We use an empirical expression for the electron heat flux. We derived a nonlinear dissipation term for the residual energy that includes both the Alfvén effect and the turbulent small-scale dynamo effect. Similarly, we obtained the NI/slab time-scale in an NI MHD phenomenology to use in the derivation of the nonlinear term that incorporates the Alfvén effect. Results. A detailed comparison between the theoretical model solutions and the fast solar wind measured by PSP and Helios 2 shows that they are consistent. The results show that the nearly incompressible NI/slab turbulence component describes observations of the fast solar wind periods when the solar wind flow is aligned or antialigned with the magnetic field.more » « less
-
Abstract We report observations of direct evidence of energetic protons being accelerated above ∼400 keV within the reconnection exhaust of a heliospheric current sheet (HCS) crossing by NASA’s Parker Solar Probe (PSP) at a distance of ∼16.25 solar radii (Rs) from the Sun. Inside the exhaust, both the reconnection-generated plasma jet and the accelerated protons up to ∼400 keV propagated toward the Sun, unambiguously establishing their origin from HCS reconnection sites located antisunward of PSP. Within the core of the exhaust, PSP detected stably trapped energetic protons up to ∼400 keV, which is ≈1000 times greater than the available magnetic energy per particle. The differential energy spectrum of the accelerated protons behaved as a pure power law with spectral index of ∼−5. Supporting simulations using thekglobalmodel suggest that the trapping and acceleration of protons up to ∼400 keV in the reconnection exhaust are likely facilitated by merging magnetic islands with a guide field between ∼0.2 and 0.3 of the reconnecting magnetic field, consistent with the observations. These new results, enabled by PSP’s proximity to the Sun, demonstrate that magnetic reconnection in the HCS is a significant new source of energetic particles in the near-Sun solar wind. Our findings of in situ particle acceleration via magnetic reconnection at the HCS provide valuable insights into this fundamental process, which frequently converts the large magnetic field energy density in the near-Sun plasma environment and may be responsible for heating the Sun’s atmosphere, accelerating the solar wind, and energizing charged particles to extremely high energies in solar flares.more » « less
-
Abstract Recent observations of the solar wind ions by the SPAN-I instruments on board the Parker Solar Probe (PSP) spacecraft at solar perihelia (Encounters) 4 and closer find ample evidence of complex anisotropic non-Maxwellian velocity distributions that consist of core, beam, and “hammerhead” (i.e., anisotropic beam) populations. The proton core populations are anisotropic, withT⊥/T∥ > 1, and the beams have super-Alfvénic speed relative to the core (we provide an example from Encounter 17). Theα-particle population shows similar features to the protons. These unstable velocity distribution functions (VDFs) are associated with enhanced, right-hand (RH) and left-hand (LH) polarized ion-scale kinetic wave activity, detected by the FIELDS instrument. Motivated by PSP observations, we employ nonlinear hybrid models to investigate the evolution of the anisotropic hot-beam VDFs and model the growth and the nonlinear stage of ion kinetic instabilities in several linearly unstable cases. The models are initialized with ion VDFs motivated by the observational parameters. We find rapidly growing (in terms of proton gyroperiods) combined ion-cyclotron and magnetosonic instabilities, which produce LH and RH ion-scale wave spectra, respectively. The modeled ion VDFs in the nonlinear stage of the evolution are qualitatively in agreement with PSP observations of the anisotropic core and “hammerhead” velocity distributions, quantifying the effect of the ion kinetic instabilities on wind plasma heating close to the Sun. We conclude that the wave–particle interactions play an important role in the energy transfer between the magnetic energy (waves) and random particle motion, leading to anisotropic solar wind plasma heating.more » « less
-
Abstract Some of the most common processes in the solar wind, such as turbulence and wave generation by instabilities, are associated with spectral magnetic helicity. Therefore, the helicity is a convenient tool to investigate these processes. We use three-dimensional nonlinear kinetic simulations with particle ions and fluid electrons to analyze the magnetic helicity produced by proton temperature anisotropy instabilities coexisting with an ambient turbulence. The symmetry of the unstable system is violated by alpha-particle streaming with respect to protons along the mean magnetic field. At the same time, the turbulent fluctuations are also imbalanced by a nonzero cross-helicity. We show that in the nonlinear phase of the instability the resulting helicity structure is different from the prediction of the linear theory. In particular, it contains sign reversals and multiple domains of nonzero helicity. The turbulence generates its own magnetic helicity signature, which extends over a wide range of angles around the direction perpendicular to the mean magnetic field, and can have a sign the same as or opposite to that of the instability. These findings are consistent with the observed helicity spectra in the solar wind.more » « less
An official website of the United States government
