skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MusicFace: Music-driven expressive singing face synthesis
Abstract It remains an interesting and challenging problem to synthesize a vivid and realistic singing face driven by music. In this paper, we present a method for this task with natural motions for the lips, facial expression, head pose, and eyes. Due to the coupling of mixed information for the human voice and backing music in common music audio signals, we design a decouple-and-fuse strategy to tackle the challenge. We first decompose the input music audio into a human voice stream and a backing music stream. Due to the implicit and complicated correlation between the two-stream input signals and the dynamics of the facial expressions, head motions, and eye states, we model their relationship with an attention scheme, where the effects of the two streams are fused seamlessly. Furthermore, to improve the expressivenes of the generated results, we decompose head movement generation in terms of speed and direction, and decompose eye state generation into short-term blinking and long-term eye closing, modeling them separately. We have also built a novel dataset, SingingFace, to support training and evaluation of models for this task, including future work on this topic. Extensive experiments and a user study show that our proposed method is capable of synthesizing vivid singing faces, qualitatively and quantitatively better than the prior state-of-the-art.  more » « less
Award ID(s):
2007661
PAR ID:
10558869
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Computational Visual Media
Volume:
10
Issue:
1
ISSN:
2096-0433
Page Range / eLocation ID:
119 to 136
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Leonardis, Aleš; Ricci, Eliss; Roth, Stefan; Russakovsky, Olga; Sattler, Torsten; Varol, Gul (Ed.)
    Human-human communication is like a delicate dance where listeners and speakers concurrently interact to maintain conversational dynamics. Hence, an effective model for generating listener nonverbal behaviors requires understanding the dyadic context and interaction. In this paper, we present an effective framework for creating 3D facial motions in dyadic interactions. Existing work consider a listener as a reactive agent with reflexive behaviors to the speaker’s voice and facial motions. The heart of our framework is Dyadic Interaction Modeling (DIM), a pre-training approach that jointly models speakers’ and listeners’ motions through masking and contrastive learning to learn representations that capture the dyadic context. To enable the generation of non-deterministic behaviors, we encode both listener and speaker motions into discrete latent representations, through VQ-VAE. The pre-trained model is further fine-tuned for motion generation. Extensive experiments demonstrate the superiority of our framework in generating listener motions, establishing a new state-of-the-art according to the quantitative measures capturing the diversity and realism of generated motions. Qualitative results demonstrate the superior capabilities of the proposed approach in generating diverse and realistic expressions, eye blinks and head gestures. 
    more » « less
  2. Abstract 3D facial animation synthesis from audio has been a focus in recent years. However, most existing literature works are designed to map audio and visual content, providing limited knowledge regarding the relationship between emotion in audio and expressive facial animation. This work generates audio‐matching facial animations with the specified emotion label. In such a task, we argue that separating the content from audio is indispensable—the proposed model must learn to generate facial content from audio content while expressions from the specified emotion. We achieve it by an adaptive instance normalization module that isolates the content in the audio and combines the emotion embedding from the specified label. The joint content‐emotion embedding is then used to generate 3D facial vertices and texture maps. We compare our method with state‐of‐the‐art baselines, including the facial segmentation‐based and voice conversion‐based disentanglement approaches. We also conduct a user study to evaluate the performance of emotion conditioning. The results indicate that our proposed method outperforms the baselines in animation quality and expression categorization accuracy. 
    more » « less
  3. Extended reality (XR) technologies, such as virtual reality (VR) and augmented reality (AR), provide users, their avatars, and embodied agents a shared platform to collaborate in a spatial context. Although traditional face-to-face communication is limited by users’ proximity, meaning that another human’s non-verbal embodied cues become more difficult to perceive the farther one is away from that person, researchers and practitioners have started to look into ways to accentuate or amplify such embodied cues and signals to counteract the effects of distance with XR technologies. In this article, we describe and evaluate the Big Head technique, in which a human’s head in VR/AR is scaled up relative to their distance from the observer as a mechanism for enhancing the visibility of non-verbal facial cues, such as facial expressions or eye gaze. To better understand and explore this technique, we present two complimentary human-subject experiments in this article. In our first experiment, we conducted a VR study with a head-mounted display to understand the impact of increased or decreased head scales on participants’ ability to perceive facial expressions as well as their sense of comfort and feeling of “uncannniness” over distances of up to 10 m. We explored two different scaling methods and compared perceptual thresholds and user preferences. Our second experiment was performed in an outdoor AR environment with an optical see-through head-mounted display. Participants were asked to estimate facial expressions and eye gaze, and identify a virtual human over large distances of 30, 60, and 90 m. In both experiments, our results show significant differences in minimum, maximum, and ideal head scales for different distances and tasks related to perceiving faces, facial expressions, and eye gaze, and we also found that participants were more comfortable with slightly bigger heads at larger distances. We discuss our findings with respect to the technologies used, and we discuss implications and guidelines for practical applications that aim to leverage XR-enhanced facial cues. 
    more » « less
  4. We explore computational strategies for matching human vocal imitations of birdsong to actual birdsong recordings. We recorded human vocal imitations of birdsong and subsequently analysed these data using three categories of audio features for matching imitations to original birdsong: spectral, temporal, and spectrotemporal. These exploratory analyses suggest that spectral features can help distinguish imitation strategies (e.g. whistling vs. singing) but are insufficient for distinguishing species. Similarly, whereas temporal features are correlated between human imitations and natural birdsong, they are also insufficient. Spectrotemporal features showed the greatest promise, in particular when used to extract a representation of the pitch contour of birdsong and human imitations. This finding suggests a link between the task of matching human imitations to birdsong to retrieval tasks in the music domain such as query-by-humming and cover song retrieval; we borrow from such existing methodologies to outline directions for future research. 
    more » « less
  5. We present VoiceCraft-Dub, a novel approach for automated video dubbing that synthesizes high-quality speech from text and facial cues. This task has broad applications in filmmaking, multimedia creation, and assisting voice-impaired individuals. Building on the success of Neural Codec Language Models (NCLMs) for speech synthesis, our method extends their capabilities by incorporating video features, ensuring that synthesized speech is time-synchronized and expressively aligned with facial movements while preserving natural prosody. To inject visual cues, we design adapters to align facial features with the NCLM token space and introduce audio-visual fusion layers to merge audio-visual information within the NCLM framework. Additionally, we curate CelebV-Dub, a new dataset of expressive, real-world videos specifically designed for automated video dubbing. Extensive experiments show that our model achieves high-quality, intelligible, and natural speech synthesis with accurate lip synchronization, outperforming existing methods in human perception and performing favorably in objective evaluations. We also adapt VoiceCraft-Dub for the video-to-speech task, demonstrating its versatility for various applications. 
    more » « less