skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Semiclassical dynamics and coherent soliton condensates in self‐focusing nonlinear media with periodic initial conditions
Abstract The semiclassical (small dispersion) limit of the focusing nonlinear Schrödinger equation with periodic initial conditions (ICs) is studied analytically and numerically. First, through a comprehensive set of numerical simulations, it is demonstrated that solutions arising from a certain class of ICs, referred to as “periodic single‐lobe” potentials, share the same qualitative features, which also coincide with those of solutions arising from localized ICs. The spectrum of the associated scattering problem in each of these cases is then numerically computed, and it is shown that such spectrum is confined to the real and imaginary axes of the spectral variable in the semiclassical limit. This implies that all nonlinear excitations emerging from the input have zero velocity, and form a coherent nonlinear condensate. Finally, by employing a formal Wentzel‐Kramers‐Brillouin expansion for the scattering eigenfunctions, asymptotic expressions for the number and location of the bands and gaps in the spectrum are obtained, as well as corresponding expressions for the relative band widths and the number of “effective solitons.” These results are shown to be in excellent agreement with those from direct numerical computation of the eigenfunctions. In particular, a scaling law is obtained showing that the number of effective solitons is inversely proportional to the small dispersion parameter.  more » « less
Award ID(s):
2009487
PAR ID:
10456530
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Studies in Applied Mathematics
Volume:
145
Issue:
3
ISSN:
0022-2526
Page Range / eLocation ID:
p. 325-356
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The inverse scattering transform allows explicit construction of solutions to many physically significant nonlinear wave equations. Notably, this method can be extended to fractional nonlinear evolution equations characterized by anomalous dispersion using completeness of suitable eigenfunctions of the associated linear scattering problem. In anomalous diffusion, the mean squared displacement is proportional to t α , α > 0, while in anomalous dispersion, the speed of localized waves is proportional to A α , where A is the amplitude of the wave. Fractional extensions of the modified Korteweg–deVries (mKdV), sine-Gordon (sineG) and sinh-Gordon (sinhG) and associated hierarchies are obtained. Using symmetries present in the linear scattering problem, these equations can be connected with a scalar family of nonlinear evolution equations of which fractional mKdV (fmKdV), fractional sineG (fsineG), and fractional sinhG (fsinhG) are special cases. Completeness of solutions to the scalar problem is obtained and, from this, the nonlinear evolution equation is characterized in terms of a spectral expansion. In particular, fmKdV, fsineG, and fsinhG are explicitly written. One-soliton solutions are derived for fmKdV and fsineG using the inverse scattering transform and these solitons are shown to exhibit anomalous dispersion. 
    more » « less
  2. null (Ed.)
    It has been shown analytically that Peregrine solitons emerge locally from a universal mechanism in the so-called semiclassical limit of the one-dimensional focusing nonlinear Schrödinger equation. Experimentally, this limit corresponds to the strongly nonlinear regime where the dispersion is much weaker than nonlinearity at initial time. We review here evidences of this phenomenon obtained on different experimental platforms. In particular, the spontaneous emergence of coherent structures exhibiting locally the Peregrine soliton behavior has been demonstrated in optical fiber experiments involving either single pulse or partially coherent waves. We also review theoretical and numerical results showing the link between this phenomenon and the emergence of heavy-tailed statistics (rogue waves). 
    more » « less
  3. Abstract We characterize initial value problems for the defocusing Manakov system (coupled two-component nonlinear Schrödinger equation) with nonzero background and well-defined spatial parity symmetry (i.e., when each of the components of the solution is either even or odd), corresponding to boundary value problems on the half line with Dirichlet or Neumann boundary conditions at the origin. We identify the symmetries of the eigenfunctions arising from the spatial parity of the solution, and we determine the corresponding symmetries of the scattering data (reflection coefficients, discrete spectrum and norming constants). All parity induced symmetries are found to be more complicated than in the scalar (i.e., one-component) case. In particular, we show that the discrete eigenvalues giving rise to dark solitons arise in symmetric quartets, and those giving rise to dark–bright solitons in symmetric octets. We also characterize the differences between the purely even or purely odd case (in which both components are either even or odd functions of x ) and the ‘mixed parity’ cases (in which one component is even while the other is odd). Finally, we show how, in each case, the spatial symmetry yields a constraint on the possible existence of self-symmetric eigenvalues, corresponding to stationary solitons, and we study the resulting behavior of solutions. 
    more » « less
  4. The forced soliton equation is the starting point for semiclassical computations with solitons away from the small momentum transfer regime. This paper develops necessary analytical and numerical tools for analyzing solutions to the forced soliton equation in the context of two-dimensional models with kinks. Results include a finite degree of freedom regularization of soliton sector physics based on periodic and anti-periodic lattice models, a detailed analysis of numerical solutions, and the development of perturbation theory in the soliton momentum transfer to mass ratio Delta P/M. Numerical solutions at large transfer Delta P/M are capable of exhibiting, in a smooth and controlled fashion, extreme phenomena such as soliton-antisoliton pair creation and superluminal collective coordinate velocities, which we investigate. 
    more » « less
  5. The generalized nonlinear Schr\"odinger equation with full dispersion (FDNLS) is considered in the semiclassical regime. The Whitham modulation equations are obtained for the FDNLS equation with general linear dispersion and a generalized, local nonlinearity. Assuming the existence of a four-parameter family of two-phase solutions, a multiple-scales approach yields a system of four independent, first-order, quasi-linear conservation laws of hydrodynamic type that correspond to the slow evolution of the two wavenumbers, mass, and momentum of modulated periodic traveling waves. The modulation equations are further analyzed in the dispersionless and weakly nonlinear regimes. The ill-posedness of the dispersionless equations corresponds to the classical criterion for modulational instability (MI). For modulations of linear waves, ill-posedness coincides with the generalized MI criterion, recently identified by Amiranashvili and Tobisch [New J. Phys., 21 (2019), 033029]. A new instability index is identified by the transition from real to complex characteristics for the weakly nonlinear modulation equations. This instability is associated with long wavelength modulations of nonlinear two-phase wavetrains and can exist even when the corresponding one-phase wavetrain is stable according to the generalized MI criterion. Another interpretation is that while infinitesimal perturbations of a periodic wave may not grow, small but finite amplitude perturbations may grow, hence this index identifies a nonlinear instability mechanism for one-phase waves. Classifications of instability indices for multiple FDNLS equations with higher-order dispersion, including applications to finite-depth water waves and the discrete NLS equation, are presented and compared with direct numerical simulations. 
    more » « less