skip to main content


Title: Manakov system with parity symmetry on nonzero background and associated boundary value problems
Abstract We characterize initial value problems for the defocusing Manakov system (coupled two-component nonlinear Schrödinger equation) with nonzero background and well-defined spatial parity symmetry (i.e., when each of the components of the solution is either even or odd), corresponding to boundary value problems on the half line with Dirichlet or Neumann boundary conditions at the origin. We identify the symmetries of the eigenfunctions arising from the spatial parity of the solution, and we determine the corresponding symmetries of the scattering data (reflection coefficients, discrete spectrum and norming constants). All parity induced symmetries are found to be more complicated than in the scalar (i.e., one-component) case. In particular, we show that the discrete eigenvalues giving rise to dark solitons arise in symmetric quartets, and those giving rise to dark–bright solitons in symmetric octets. We also characterize the differences between the purely even or purely odd case (in which both components are either even or odd functions of x ) and the ‘mixed parity’ cases (in which one component is even while the other is odd). Finally, we show how, in each case, the spatial symmetry yields a constraint on the possible existence of self-symmetric eigenvalues, corresponding to stationary solitons, and we study the resulting behavior of solutions.  more » « less
Award ID(s):
2106488 2009487
NSF-PAR ID:
10335208
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Physics A: Mathematical and Theoretical
Volume:
55
Issue:
25
ISSN:
1751-8113
Page Range / eLocation ID:
254001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We outline and interpret a recently developed theory of impedance matching or reflectionless excitation of arbitrary finite photonic structures in any dimension. The theory includes both the case of guided wave and free-space excitation. It describes the necessary and sufficient conditions for perfectly reflectionless excitation to be possible and specifies how many physical parameters must be tuned to achieve this. In the absence of geometric symmetries, such as parity and time-reversal, the product of parity and time-reversal, or rotational symmetry, the tuning of at least one structural parameter will be necessary to achieve reflectionless excitation. The theory employs a recently identified set of complex frequency solutions of the Maxwell equations as a starting point, which are defined by having zero reflection into a chosen set of input channels, and which are referred to as R-zeros. Tuning is generically necessary in order to move an R-zero to the real frequency axis, where it becomes a physical steady-state impedance-matched solution, which we refer to as a reflectionless scattering mode (RSM). In addition, except in single-channel systems, the RSM corresponds to a particular input wavefront, and any other wavefront will generally not be reflectionless. It is useful to consider the theory as representing a generalization of the concept of critical coupling of a resonator, but it holds in arbitrary dimension, for arbitrary number of channels, and even when resonances are not spectrally isolated. In a structure with parity and time-reversal symmetry (a real dielectric function) or with parity–time symmetry, generically a subset of the R-zeros has real frequencies, and reflectionless states exist at discrete frequencies without tuning. However, they do not exist within every spectral range, as they do in the special case of the Fabry–Pérot or two-mirror resonator, due to a spontaneous symmetry-breaking phenomenon when two RSMs meet. Such symmetry-breaking transitions correspond to a new kind of exceptional point, only recently identified, at which the shape of the reflection and transmission resonance lineshape is flattened. Numerical examples of RSMs are given for one-dimensional multimirror cavities, a two-dimensional multiwaveguide junction, and a multimode waveguide functioning as a perfect mode converter. Two solution methods to find R-zeros and RSMs are discussed. The first one is a straightforward generalization of the complex scaling or perfectly matched layer method and is applicable in a number of important cases; the second one involves a mode-specific boundary matching method that has only recently been demonstrated and can be applied to all geometries for which the theory is valid, including free space and multimode waveguide problems of the type solved here. 
    more » « less
  2. Embedding properties of network realizations of dissipative reduced order models Jörn Zimmerling, Mikhail Zaslavsky,Rob Remis, Shasri Moskow, Alexander Mamonov, Murthy Guddati, Vladimir Druskin, and Liliana Borcea Mathematical Sciences Department, Worcester Polytechnic Institute https://www.wpi.edu/people/vdruskin Abstract Realizations of reduced order models of passive SISO or MIMO LTI problems can be transformed to tridiagonal and block-tridiagonal forms, respectively, via dierent modications of the Lanczos algorithm. Generally, such realizations can be interpreted as ladder resistor-capacitor-inductor (RCL) networks. They gave rise to network syntheses in the rst half of the 20th century that was at the base of modern electronics design and consecutively to MOR that tremendously impacted many areas of engineering (electrical, mechanical, aerospace, etc.) by enabling ecient compression of the underlining dynamical systems. In his seminal 1950s works Krein realized that in addition to their compressing properties, network realizations can be used to embed the data back into the state space of the underlying continuum problems. In more recent works of the authors Krein's ideas gave rise to so-called nite-dierence Gaussian quadrature rules (FDGQR), allowing to approximately map the ROM state-space representation to its full order continuum counterpart on a judicially chosen grid. Thus, the state variables can be accessed directly from the transfer function without solving the full problem and even explicit knowledge of the PDE coecients in the interior, i.e., the FDGQR directly learns" the problem from its transfer function. This embedding property found applications in PDE solvers, inverse problems and unsupervised machine learning. Here we show a generalization of this approach to dissipative PDE problems, e.g., electromagnetic and acoustic wave propagation in lossy dispersive media. Potential applications include solution of inverse scattering problems in dispersive media, such as seismic exploration, radars and sonars. To x the idea, we consider a passive irreducible SISO ROM fn(s) = Xn j=1 yi s + σj , (62) assuming that all complex terms in (62) come in conjugate pairs. We will seek ladder realization of (62) as rjuj + vj − vj−1 = −shˆjuj , uj+1 − uj + ˆrj vj = −shj vj , (63) for j = 0, . . . , n with boundary conditions un+1 = 0, v1 = −1, and 4n real parameters hi, hˆi, ri and rˆi, i = 1, . . . , n, that can be considered, respectively, as the equivalent discrete inductances, capacitors and also primary and dual conductors. Alternatively, they can be viewed as respectively masses, spring stiness, primary and dual dampers of a mechanical string. Reordering variables would bring (63) into tridiagonal form, so from the spectral measure given by (62 ) the coecients of (63) can be obtained via a non-symmetric Lanczos algorithm written in J-symmetric form and fn(s) can be equivalently computed as fn(s) = u1. The cases considered in the original FDGQR correspond to either (i) real y, θ or (ii) real y and imaginary θ. Both cases are covered by the Stieltjes theorem, that yields in case (i) real positive h, hˆ and trivial r, rˆ, and in case (ii) real positive h,r and trivial hˆ,rˆ. This result allowed us a simple interpretation of (62) as the staggered nite-dierence approximation of the underlying PDE problem [2]. For PDEs in more than one variables (including topologically rich data-manifolds), a nite-dierence interpretation is obtained via a MIMO extensions in block form, e.g., [4, 3]. The main diculty of extending this approach to general passive problems is that the Stieltjes theory is no longer applicable. Moreover, the tridiagonal realization of a passive ROM transfer function (62) via the ladder network (63) cannot always be obtained in port-Hamiltonian form, i.e., the equivalent primary and dual conductors may change sign [1]. 100 Embedding of the Stieltjes problems, e.g., the case (i) was done by mapping h and hˆ into values of acoustic (or electromagnetic) impedance at grid cells, that required a special coordinate stretching (known as travel time coordinate transform) for continuous problems. Likewise, to circumvent possible non-positivity of conductors for the non-Stieltjes case, we introduce an additional complex s-dependent coordinate stretching, vanishing as s → ∞ [1]. This stretching applied in the discrete setting induces a diagonal factorization, removes oscillating coecients, and leads to an accurate embedding for moderate variations of the coecients of the continuum problems, i.e., it maps discrete coecients onto the values of their continuum counterparts. Not only does this embedding yields an approximate linear algebraic algorithm for the solution of the inverse problems for dissipative PDEs, it also leads to new insight into the properties of their ROM realizations. We will also discuss another approach to embedding, based on Krein-Nudelman theory [5], that results in special data-driven adaptive grids. References [1] Borcea, Liliana and Druskin, Vladimir and Zimmerling, Jörn, A reduced order model approach to inverse scattering in lossy layered media, Journal of Scientic Computing, V. 89, N1, pp. 136,2021 [2] Druskin, Vladimir and Knizhnerman, Leonid, Gaussian spectral rules for the three-point second dierences: I. A two-point positive denite problem in a semi-innite domain, SIAM Journal on Numerical Analysis, V. 37, N 2, pp.403422, 1999 [3] Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Distance preserving model order reduction of graph-Laplacians and cluster analysis, Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Journal of Scientic Computing, V. 90, N 1, pp 130, 2022 [4] Druskin, Vladimir and Moskow, Shari and Zaslavsky, Mikhail LippmannSchwingerLanczos algorithm for inverse scattering problems, Inverse Problems, V. 37, N. 7, 2021, [5] Mark Adolfovich Nudelman The Krein String and Characteristic Functions of Maximal Dissipative Operators, Journal of Mathematical Sciences, 2004, V 124, pp 49184934 Go back to Plenary Speakers Go back to Speakers Go back 
    more » « less
  3. The Stokes equation describes the motion of fluids when inertial forces are negligible compared with viscous forces. In this article, we explore the consequence of parity-violating and non-dissipative (i.e. odd) viscosities on Stokes flows in three dimensions. Parity-violating viscosities are coefficients of the viscosity tensor that are not invariant under mirror reflections of space, while odd viscosities are those which do not contribute to dissipation of mechanical energy. These viscosities can occur in systems ranging from synthetic and biological active fluids to magnetized and rotating fluids. We first systematically enumerate all possible parity-violating viscosities compatible with cylindrical symmetry, highlighting their connection to potential microscopic realizations. Then, using a combination of analytical and numerical methods, we analyse the effects of parity-violating viscosities on the Stokeslet solution, on the flow past a sphere or a bubble and on many-particle sedimentation. In all the cases that we analyse, parity-violating viscosities give rise to an azimuthal flow even when the driving force is parallel to the axis of cylindrical symmetry. For a few sedimenting particles, the azimuthal flow bends the trajectories compared with a traditional Stokes flow. For a cloud of particles, the azimuthal flow impedes the transformation of the spherical cloud into a torus and the subsequent breakup into smaller parts that would otherwise occur. The presence of azimuthal flows in cylindrically symmetric systems (sphere, bubble, cloud of particles) can serve as a probe for parity-violating viscosities in experimental systems. 
    more » « less
  4. We propose and prove a family of generalized Lieb-Schultz-Mattis~(LSM) theorems for symmetry protected topological~(SPT) phases on boson/spin models in any dimensions.The ``conventional'' LSM theorem, applicable to e.g. any translation invariant system with an odd number of spin-1/2 particles per unit cell, forbids a symmetric short-range-entangled ground state in such a system.Here we focus on systems with no LSM anomaly, where global/crystalline symmetries and fractional spins within the unit cell ensure that any symmetric SRE ground state must be a non-trivial SPT phase with anomalous boundary excitations.Depending on models, they can be either strong or ``higher-order'' crystalline SPT phases, characterized by non-trivial surface/hinge/corner states.Furthermore, given the symmetry group and the spatial assignment of fractional spins, we are able to determine all possible SPT phases for a symmetric ground state, using the real space construction for SPT phases based on the spectral sequence of cohomology theory.We provide examples in one, two and three spatial dimensions, and discuss possible physical realization of these SPT phases based on condensation of topological excitations in fractionalized phases. 
    more » « less
  5. Abstract Phased arrays have been a cornerstone of non-destructive evaluation, sonar communications, and medical imaging for years. Conventional arrays work by imparting a static phase gradient across a set of transducers to steer a self-created wavefront in a desired direction. Most recently, space-time-periodic (STP) phased arrays have been explored in the context of multi-harmonic wave beaming. Owing to the STP phase profile, multiple scattered harmonics of a single-frequency input are generated which propagate simultaneously in different directional lanes. Each of these lanes is characterized by a principal angle and a distinct frequency signature that can be computationally predicted. However, owing to the Hermitian (real) nature of the spatiotemporal phase gradient, waves emergent from the array are still bound to propagate simultaneously along up- and down-converted directions with a perfectly symmetric energy distribution. Seeking to push this boundary, this paper presents a class of non-Hermitian STP phased arrays which exercise a degree of unprecedented control over the transmitted waves through an interplay between gain, loss, and coupling between its individual components. A complex phase profile under two special symmetries, parity-time (PT) and anti-PT, is introduced that enables the modulation of the amplitude of various harmonics and decouples up- and down-converted harmonics of the same order. We show that these arrays provide on-demand suppression of either up- or down-converted harmonics at an exceptional point—a degeneracy in the parameter space where the system’s eigenvalues and eigenvectors coalesce. An experimental prototype of the non-Hermitian array is constructed to illustrate the selective directional suppression via time-transient measurements of the out-of-plane displacements of an elastic substrate via laser vibrometry. The theory of non-Hermitian phased arrays and their experimental realization unlock rich opportunities in precise elastoacoustic wave manipulation that can be tailored for a diverse range of engineering applications. 
    more » « less