Open systems with balanced gain and loss, described by parity-time reversal (PT) symmetric Hamiltonians have been deeply explored over the past decade. Most explorations are limited to finite discrete models (in real or reciprocal spaces) or continuum problems in one dimension. As a result, these models do not leverage the complexity and variability of two-dimensional continuum problems on a compact support. Here, we investigate eigenvalues of the Schrödinger equation on a disk with zero boundary condition, in the presence of constant, PT-symmetric, gain-loss potential that is confined to two mirror-symmetric disks. We find a rich variety of exceptional points, re-entrant PT-symmetric phases, and a nonmonotonic dependence of the PT-symmetry breaking threshold on the system parameters. By comparing results of two model variations, we show that this simple model of a multicore fiber supports propagating modes in the presence of gain and loss.
more »
« less
Manakov system with parity symmetry on nonzero background and associated boundary value problems
Abstract We characterize initial value problems for the defocusing Manakov system (coupled two-component nonlinear Schrödinger equation) with nonzero background and well-defined spatial parity symmetry (i.e., when each of the components of the solution is either even or odd), corresponding to boundary value problems on the half line with Dirichlet or Neumann boundary conditions at the origin. We identify the symmetries of the eigenfunctions arising from the spatial parity of the solution, and we determine the corresponding symmetries of the scattering data (reflection coefficients, discrete spectrum and norming constants). All parity induced symmetries are found to be more complicated than in the scalar (i.e., one-component) case. In particular, we show that the discrete eigenvalues giving rise to dark solitons arise in symmetric quartets, and those giving rise to dark–bright solitons in symmetric octets. We also characterize the differences between the purely even or purely odd case (in which both components are either even or odd functions of x ) and the ‘mixed parity’ cases (in which one component is even while the other is odd). Finally, we show how, in each case, the spatial symmetry yields a constraint on the possible existence of self-symmetric eigenvalues, corresponding to stationary solitons, and we study the resulting behavior of solutions.
more »
« less
- PAR ID:
- 10335208
- Date Published:
- Journal Name:
- Journal of Physics A: Mathematical and Theoretical
- Volume:
- 55
- Issue:
- 25
- ISSN:
- 1751-8113
- Page Range / eLocation ID:
- 254001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Stokes equation describes the motion of fluids when inertial forces are negligible compared with viscous forces. In this article, we explore the consequence of parity-violating and non-dissipative (i.e. odd) viscosities on Stokes flows in three dimensions. Parity-violating viscosities are coefficients of the viscosity tensor that are not invariant under mirror reflections of space, while odd viscosities are those which do not contribute to dissipation of mechanical energy. These viscosities can occur in systems ranging from synthetic and biological active fluids to magnetized and rotating fluids. We first systematically enumerate all possible parity-violating viscosities compatible with cylindrical symmetry, highlighting their connection to potential microscopic realizations. Then, using a combination of analytical and numerical methods, we analyse the effects of parity-violating viscosities on the Stokeslet solution, on the flow past a sphere or a bubble and on many-particle sedimentation. In all the cases that we analyse, parity-violating viscosities give rise to an azimuthal flow even when the driving force is parallel to the axis of cylindrical symmetry. For a few sedimenting particles, the azimuthal flow bends the trajectories compared with a traditional Stokes flow. For a cloud of particles, the azimuthal flow impedes the transformation of the spherical cloud into a torus and the subsequent breakup into smaller parts that would otherwise occur. The presence of azimuthal flows in cylindrically symmetric systems (sphere, bubble, cloud of particles) can serve as a probe for parity-violating viscosities in experimental systems.more » « less
-
We propose and prove a family of generalized Lieb-Schultz-Mattis~(LSM) theorems for symmetry protected topological~(SPT) phases on boson/spin models in any dimensions.The ``conventional'' LSM theorem, applicable to e.g. any translation invariant system with an odd number of spin-1/2 particles per unit cell, forbids a symmetric short-range-entangled ground state in such a system.Here we focus on systems with no LSM anomaly, where global/crystalline symmetries and fractional spins within the unit cell ensure that any symmetric SRE ground state must be a non-trivial SPT phase with anomalous boundary excitations.Depending on models, they can be either strong or ``higher-order'' crystalline SPT phases, characterized by non-trivial surface/hinge/corner states.Furthermore, given the symmetry group and the spatial assignment of fractional spins, we are able to determine all possible SPT phases for a symmetric ground state, using the real space construction for SPT phases based on the spectral sequence of cohomology theory.We provide examples in one, two and three spatial dimensions, and discuss possible physical realization of these SPT phases based on condensation of topological excitations in fractionalized phases.more » « less
-
Chiral fluids – such as fluids under rotation or a magnetic field as well as synthetic and biological active fluids – flow in a different way than ordinary ones. Due to symmetries broken at the microscopic level, chiral fluids may have asymmetric stress and viscosity tensors, for example giving rise to a hydrostatic torque or non-dissipative (odd) and parity-violating viscosities. In this article, we investigate the motion of rigid bodies in such an anisotropic fluid in the incompressible Stokes regime through the mobility matrix, which encodes the response of a solid body to forces and torques. We demonstrate how the form of the mobility matrix, which is usually determined by particle geometry, can be analogously controlled by the symmetries of the fluid. By computing the mobility matrix for simple shapes in a three-dimensional (3-D) anisotropic chiral fluid, we predict counterintuitive phenomena such as motion at an angle to the direction of applied forces and spinning under the force of gravity.more » « less
-
Unambiguous identification of the superconducting order parameter symmetry in has remained elusive for more than a quarter century. While a chiral p-wave ground state analogue to superfluid3He-A was ruled out only very recently, other proposed triplet-pairing scenarios are still viable. Establishing the condensate magnetic susceptibility reveals a sharp distinction between even-parity (singlet) and odd-parity (triplet) pairing since the superconducting condensate is magnetically polarizable only in the latter case. Here field-dependent17O Knight shift measurements, being sensitive to the spin polarization, are compared to previously reported specific heat measurements for the purpose of distinguishing the condensate contribution from that due to quasiparticles. We conclude that the shift results can be accounted for entirely by the expected field-induced quasiparticle response. An upper bound for the condensate magnetic response of <10% of the normal state susceptibility is sufficient to exclude all purely odd-parity candidates.more » « less
An official website of the United States government

