skip to main content


Title: The Structure of the Large-Scale Heliosphere as Seen by Current Models
Abstract

This review summarizes the current state of research aiming at a description of the global heliosphere using both analytical and numerical modeling efforts, particularly in view of the overall plasma/neutral flow and magnetic field structure, and its relation to energetic neutral atoms. Being part of a larger volume on current heliospheric research, it also lays out a number of key concepts and describes several classic, though still relevant early works on the topic. Regarding numerical simulations, emphasis is put on magnetohydrodynamic (MHD), multi-fluid, kinetic-MHD, and hybrid modeling frameworks. Finally, open issues relating to the physical relevance of so-called “croissant” models of the heliosphere, as well as the general (dis)agreement of model predictions with observations are highlighted and critically discussed.

 
more » « less
Award ID(s):
2010450 2031611
NSF-PAR ID:
10368066
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Space Science Reviews
Volume:
218
Issue:
4
ISSN:
0038-6308
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The vast size of the Sun’s heliosphere, combined with sparse spacecraft measurements over that large domain, makes numerical modeling a critical tool to predict solar wind conditions where there are no measurements. This study models the solar wind propagation in 2D using the BATSRUS MHD solver to form the MSWIM2D data set of solar wind in the outer heliosphere. Representing the solar wind from 1 to 75 au in the ecliptic plane, a continuous model run from 1995–present has been performed. The results are available for free athttp://csem.engin.umich.edu/mswim2d/. The web interface extracts output at desired locations and times. In addition to solar wind ions, the model includes neutrals coming from the interstellar medium to reproduce the slowing of the solar wind in the outer heliosphere and to extend the utility of the model to larger radial distances. The inclusion of neutral hydrogen is critical to recreating the solar wind accurately outside of ∼4 au. The inner boundary is filled by interpolating and time-shifting in situ observations from L1 and STEREO spacecraft when available. Using multiple spacecraft provides a more accurate boundary condition than a single spacecraft with time shifting alone. Validations of MSWIM2D are performed using MAVEN and New Horizons observations. The results demonstrate the efficacy of this model to propagate the solar wind to large distances and obtain practical, useful solar wind predictions. For example, the rms error of solar wind speed prediction at Mars is only 66 km s−1and at Pluto is a mere 25 km s−1.

     
    more » « less
  2. ABSTRACT

    In this work, we present numerical simulations of Stream Interaction Regions (SIRs) and Corotating Interaction Regions (CIRs) using the sunrunner3d tool that employs as a coronal model the boundary conditions obtained by corhel/mas with the pluto code that describes the global 3D structure of the solar wind using the magnetohydrodynamics (MHD) approach in the inner heliosphere. Specifically, we selected a set of SIRs and CIRs observed by the Parker Solar Probe (PSP) and STEREO-A (STA) missions during the Carrington rotations (CRs) 2207 to 2210 and CRs from 2020 to 2022. In order to describe the dynamics of the plasma that constitutes the solar wind background conditions for the selected CRs, we solve the ideal MHD equations in an inertial frame of reference, managing the solar rotation by rotating the boundary values in ϕ (longitude) at a rate corresponding to the sidereal rotation rate of the solar equator. We show that our results using sunrunner3d can globally reproduce the plasma parameters, such as radial velocity, number proton density, and radial magnetic field strength of these large-scale structures, observed by PSP and STA at distances near the Sun and around 1 au, respectively. These results allow exploring the global evolution of SIRs/CIRs in the inner heliosphere using sunrunner3d.

     
    more » « less
  3. Abstract

    The shape of the heliosphere is currently under active debate. Energetic neutral atoms (ENAs) offer the best method for investigating the global structure of the heliosphere. To date, the Interstellar Boundary Explorer (IBEX) and the Ion and Neutral Camera (INCA) that was on board Cassini provide the only global ENA observations of the heliosphere. While extensive modeling has been done at IBEX-Hi energies (0.52–6 keV), no global ENA modeling has been conducted for INCA energies (5.2–55 keV). Here, we use an ENA model of the heliosphere based on hybrid results that capture the heating and acceleration of pickup ions (PUIs) at the termination shock to compare modeled global ENA results with IBEX-Hi and INCA observations using both a long- and short-tail model of the heliosphere. We find that the modeled ENA results for the two heliotail configurations produce similar results from the IBEX-Hi through the INCA energies. We conclude from our modeled ENAs, which only include PUI acceleration at the termination shock, that ENA observations in currently available energy ranges are insufficient for probing the shape and length of the heliotail. However, as a prediction for the future IMAP-Ultra mission (3–300 keV) we present modeled ENA maps at 80 keV, where the cooling length (∼600 au) is greater than the distance where the long- and short-heliotail models differ (∼400 au), and find that IMAP-Ultra should be able to identify the shape of the heliotail, predicting differences in the north lobe to downwind flux ratio between the models at 48%.

     
    more » « less
  4. Energy stored in the magnetic field in the solar atmosphere above active regions is a key driver of all solar activity (e.g., solar flares and coronal mass ejections), some of which can affect life on Earth. Radio observations provide a unique diagnostic of the coronal magnetic fields that make them a critical tool for the study of these phenomena, using the technique of broadband radio imaging spectropolarimetry. Observations with the ngVLA will provide unique observations of coronal magnetic fields and their evolution, key inputs and constraints for MHD numerical models of the solar atmosphere and eruptive processes, and a key link between lower layers of the solar atmosphere and the heliosphere. In doing so they will also provide practical "research to operations" guidance for space weather forecasting. 
    more » « less
  5. Abstract

    Based on the observations from the balloon‐borne instrument High‐altitude Interferometer WIND experiment (HIWIND) and the simulations from the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM), the Grid Agnostic MHD Environment for Research Applications (GAMERA)‐TIEGCM (GT), and the GAMERA‐TIEGCM‐RCM (GTR), we investigate the variations of summer high‐latitude thermospheric winds and their physical mechanisms from 25 to 30 June, 2018. HIWIND observations show that the meridional winds were the largest at midnight and exhibited strong day‐to‐day variations during the 6‐day period, which were generally reproduced by those three models. The day‐to‐day variations of winds were mainly associated with the interplanetary magnetic field (IMF)perturbations, while the magnetic latitude variations also contributed to the large day‐to‐day variations of the winds seen in the observations. Meanwhile, the zonal winds were mostly westward during the daytime, and the wind speed became large, especially in the afternoon, which is related to the westward ion drift velocity. The observed meridional winds tend to turn equatorward during the daytime on some days, while the simulated winds blow mostly poleward except for simulations by the GTR model on 26 June. The GTR model revealed that the equatorward meridional winds on 26 June were associated with strong and negative IMFconditions, which tilts the convection pattern to the prenoon sector. The simulations also revealed that the ring current could contribute to affecting the neutral wind variations, especially under geomagnetically active conditions.

     
    more » « less