Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 17, 2023
-
Free, publicly-accessible full text available December 12, 2022
-
Tolerating Defects in Low-Power Neural Network Accelerators Via Retraining-Free Weight ApproximationHardware accelerators are essential to the accommodation of ever-increasing Deep Neural Network (DNN) workloads on the resource-constrained embedded devices. While accelerators facilitate fast and energy-efficient DNN operations, their accuracy is threatened by faults in their on-chip and off-chip memories, where millions of DNN weights are held. The use of emerging Non-Volatile Memories (NVM) further exposes DNN accelerators to a non-negligible rate of permanent defects due to immature fabrication, limited endurance, and aging. To tolerate defects in NVM-based DNN accelerators, previous work either requires extra redundancy in hardware or performs defect-aware retraining, imposing significant overhead. In comparison, this paper proposes amore »Free, publicly-accessible full text available October 31, 2022
-
ReRAM-based neural network accelerator is a promising solution to handle the memory- and computation-intensive deep learning workloads. However, it suffers from unique device errors. These errors can accumulate to massive levels during the run time and cause significant accuracy drop. It is crucial to obtain its fault status in real-time before any proper repair mechanism can be applied. However, calibrating such statistical information is non-trivial because of the need of a large number of test patterns, long test time, and high test coverage considering that complex errors may appear in million-to-billion weight parameters. In this paper, we leverage the conceptmore »