We study the structure of the Liouville quantum gravity (LQG) surfaces that are cut out as one explores a conformal loopensemble
Neutrinos are copiously emitted by neutron star mergers, due to the high temperatures reached by dense matter during the merger and its aftermath. Neutrinos influence the merger dynamics and shape the properties of the ejecta, including the resulting
 Publication Date:
 NSFPAR ID:
 10370011
 Journal Name:
 The European Physical Journal A
 Volume:
 58
 Issue:
 5
 ISSN:
 1434601X
 Publisher:
 Springer Science + Business Media
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract for$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$ in (4, 8) that is drawn on an independent$$\kappa '$$ ${\kappa}^{\prime}$ LQG surface for$$\gamma $$ $\gamma $ . The results are similar in flavor to the ones from our companion paper dealing with$$\gamma ^2=16/\kappa '$$ ${\gamma}^{2}=16/{\kappa}^{\prime}$ for$$\hbox {CLE}_{\kappa }$$ ${\text{CLE}}_{\kappa}$ in (8/3, 4), where the loops of the CLE are disjoint and simple. In particular, we encode the combined structure of the LQG surface and the$$\kappa $$ $\kappa $ in terms of stable growthfragmentation trees or their variants, which also appear in the asymptotic study of peeling processes on decorated planar maps. This has consequences for questions that do a priori not involve LQG surfaces: In our paper entitled “$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$CLE Percolations ” described the law of interfaces obtained when coloring the loops of a independently into two colors with respective probabilities$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$p and . This description was complete up to one missing parameter$$1p$$ $1p$ . The results of the present paper about CLE on LQG allow us to determine its value in terms of$$\rho $$ $\rho $p and . It shows in particular that$$\kappa '$$ ${\kappa}^{\prime}$ and$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$ are related via a continuum analog of the EdwardsSokal coupling between$$\hbox {CLE}_{16/\kappa '}$$ ${\text{CLE}}_{16/{\kappa}^{\prime}}$ percolation and the$$\hbox {FK}_q$$ ${\text{FK}}_{q}$q state Potts model (which makes sense evenmore » 
Abstract We present a proof of concept for a spectrally selective thermal midIR source based on nanopatterned graphene (NPG) with a typical mobility of CVDgrown graphene (up to 3000
), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an$$\hbox {cm}^2\,\hbox {V}^{1}\,\hbox {s}^{1}$$ ${\text{cm}}^{2}\phantom{\rule{0ex}{0ex}}{\text{V}}^{1}\phantom{\rule{0ex}{0ex}}{\text{s}}^{1}$inplane electric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from to 12$$\lambda =3$$ $\lambda =3$ m by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming stateoftheart pristine graphene light sources operating in the nearinfrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$\upmu$$ $\mu $ W/$$11\times 10^3$$ $11\times {10}^{3}$ at$$\hbox {m}^2$$ ${\text{m}}^{2}$ K for a bias voltage of$$T=2000$$ $T=2000$ V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and derivingmore »$$V=23$$ $V=23$ 
Direct evidence for lowenergy electron emission following O LVV Auger transitions at oxide surfaces
Abstract Oxygen, the third most abundant element in the universe, plays a key role in the chemistry of condensed matter and biological systems. Here, we report evidence for a hitherto unexplored Auger transition in oxides, where a valence band electron fills a vacancy in the 2s state of oxygen, transferring sufficient energy to allow electron emission. We used a beam of positrons with kinetic energies of
eV to create O 2s holes via matterantimatter annihilation. This made possible the elimination of the large secondary electron background that has precluded definitive measurements of the lowenergy electrons emitted through this process. Our experiments indicate that lowenergy electron emission following the Auger decay of O 2s holes from adsorbed oxygen and oxide surfaces are very efficient. Specifically, our results indicate that the low energy electron emission following the Auger decay of O 2s hole is nearly as efficient as electron emission following the relaxation of O 1s holes in$$\sim 1$$ $\sim 1$ . This has important implications for the understanding of Augerstimulated ion desorption, Coulombic decay, photodynamic cancer therapies, and may yield important insights into the radiationinduced reactive sites for corrosion and catalysis.$$\hbox {TiO}_2$$ ${\text{TiO}}_{2}$ 
Abstract Neutroncapture cross sections of neutronrich nuclei are calculated using a Hauser–Feshbach model when direct experimental cross sections cannot be obtained. A number of codes to perform these calculations exist, and each makes different assumptions about the underlying nuclear physics. We investigated the systematic uncertainty associated with the choice of HauserFeshbach code used to calculate the neutroncapture cross section of a shortlived nucleus. The neutroncapture cross section for
(n,$$^{73}\hbox {Zn}$$ ${}^{73}\text{Zn}$ )$$\gamma $$ $\gamma $ was calculated using three HauserFeshbach statistical model codes: TALYS, CoH, and EMPIRE. The calculation was first performed without any changes to the default settings in each code. Then an experimentally obtained nuclear level density (NLD) and$$^{74}\hbox {Zn}$$ ${}^{74}\text{Zn}$ ray strength function ($$\gamma $$ $\gamma $ ) were included. Finally, the nuclear structure information was made consistent across the codes. The neutroncapture cross sections obtained from the three codes are in good agreement after including the experimentally obtained NLD and$$\gamma \hbox {SF}$$ $\gamma \text{SF}$ , accounting for differences in the underlying nuclear reaction models, and enforcing consistent approximations for unknown nuclear data. It is possible to use consistent inputs and nuclear physics to reduce the differences in the calculated neutroncapture cross section from different HauserFeshbach codes. However, ensuring the treatment of the input of experimental data and othermore »$$\gamma \hbox {SF}$$ $\gamma \text{SF}$ 
Abstract We prove that the Hilbert scheme of
k points on ($${\mathbb {C}}^2$$ ${C}^{2}$ ) is selfdual under threedimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant Ktheory is invariant upon interchanging its Kähler and equivariant parameters as well as inverting the weight of the$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ ${\text{Hilb}}^{k}\left[{C}^{2}\right]$ action. First, we find a twoparameter family$${\mathbb {C}}^\times _\hbar $$ ${C}_{\u0127}^{\times}$ of selfmirror quiver varieties of type A and study their quantum Ktheory algebras. The desired quantum Ktheory of$$X_{k,l}$$ ${X}_{k,l}$ is obtained via direct limit$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ ${\text{Hilb}}^{k}\left[{C}^{2}\right]$ and by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (qLanglands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted$$l\longrightarrow \infty $$ $l\u27f6\infty $ opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsionfree rank$$\hbar $$ $\u0127$N sheaves on with the help of a different (threeparametric) family of type A quiver varieties with known mirror dual.$${\mathbb {P}}^2$$ ${P}^{2}$