Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We construct and analyze a CutFEM discretization for the Stokes problem based on the Scott–Vogelius pair. The discrete piecewise polynomial spaces are defined on macro-element triangulations which are not fitted to the smooth physical domain. Boundary conditions are imposed via penalization through the help of a Nitsche-type discretization, whereas stability with respect to small and anisotropic cuts of the bulk elements is ensured by adding local ghost penalty stabilization terms. We show stability of the scheme as well as a divergence–free property of the discrete velocity outside an O ( h ) neighborhood of the boundary. To mitigate the error caused by the violation of the divergence–free condition, we introduce local grad–div stabilization. The error analysis shows that the grad–div parameter can scale like O ( h −1 ), allowing a rather heavy penalty for the violation of mass conservation, while still ensuring optimal order error estimates.more » « less
-
We construct several smooth finite element spaces defined on three-dimensional Worsey–Farin splits. In particular, we construct C 1 C^1 , H 1 ( curl ) H^1(\operatorname {curl}) , and H 1 H^1 -conforming finite element spaces and show the discrete spaces satisfy local exactness properties. A feature of the spaces is their low polynomial degree and lack of extrinsic supersmoothness at subsimplices of the mesh. In the lowest order case, the last two spaces in the sequence consist of piecewise linear and piecewise constant spaces, and are suitable for the discretization of the (Navier-)Stokes equation.more » « less
-
Abstract This paper constructs and analyzes a boundary correction finite element method for the Stokes problem based on the Scott–Vogelius pair on Clough–Tocher splits. The velocity space consists of continuous piecewise polynomials of degree k , and the pressure space consists of piecewise polynomials of degree ( k – 1) without continuity constraints. A Lagrange multiplier space that consists of continuous piecewise polynomials with respect to the boundary partition is introduced to enforce boundary conditions and to mitigate the lack of pressure-robustness. We prove several inf-sup conditions, leading to the well-posedness of the method. In addition, we show that the method converges with optimal order and the velocity approximation is divergence-free.more » « less
-
Abstract We consider finite element approximations of the Maxwell eigenvalue problem in two dimensions. We prove, in certain settings, convergence of the discrete eigenvalues using Lagrange finite elements. In particular, we prove convergence in three scenarios: piecewise linear elements on Powell–Sabin triangulations, piecewise quadratic elements on Clough–Tocher triangulations and piecewise quartics (and higher) elements on general shape-regular triangulations. We provide numerical experiments that support the theoretical results. The computations also show that, on general triangulations, the eigenvalue approximations are very sensitive to nearly singular vertices, i.e., vertices that fall on exactly two ‘almost’ straight lines.more » « less
An official website of the United States government

Full Text Available