skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A divergence-free finite element method for the Stokes problem with boundary correction
Abstract This paper constructs and analyzes a boundary correction finite element method for the Stokes problem based on the Scott–Vogelius pair on Clough–Tocher splits. The velocity space consists of continuous piecewise polynomials of degree k , and the pressure space consists of piecewise polynomials of degree ( k – 1) without continuity constraints. A Lagrange multiplier space that consists of continuous piecewise polynomials with respect to the boundary partition is introduced to enforce boundary conditions and to mitigate the lack of pressure-robustness. We prove several inf-sup conditions, leading to the well-posedness of the method. In addition, we show that the method converges with optimal order and the velocity approximation is divergence-free.  more » « less
Award ID(s):
2011733
PAR ID:
10432852
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Numerical Mathematics
Volume:
31
Issue:
2
ISSN:
1570-2820
Page Range / eLocation ID:
105 to 123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We propose and analyse a mixed formulation for the Brinkman–Forchheimer equations for unsteady flows. Our approach is based on the introduction of a pseudostress tensor related to the velocity gradient and pressure, leading to a mixed formulation where the pseudostress tensor and the velocity are the main unknowns of the system. We establish existence and uniqueness of a solution to the weak formulation in a Banach space setting, employing classical results on nonlinear monotone operators and a regularization technique. We then present well posedness and error analysis for semidiscrete continuous-in-time and fully discrete finite element approximations on simplicial grids with spatial discretization based on the Raviart–Thomas spaces of degree $$k$$ for the pseudostress tensor and discontinuous piecewise polynomial elements of degree $$k$$ for the velocity and backward Euler time discretization. We provide several numerical results to confirm the theoretical rates of convergence and illustrate the performance and flexibility of the method for a range of model parameters. 
    more » « less
  2. In this paper, we study the optimal error estimates of the classical discontinuous Galerkin method for time-dependent 2-D hyperbolic equations using P k elements on uniform Cartesian meshes, and prove that the error in the L 2 norm achieves optimal ( k  + 1)th order convergence when upwind fluxes are used. For the linear constant coefficient case, the results hold true for arbitrary piecewise polynomials of degree k  ≥ 0. For variable coefficient and nonlinear cases, we give the proof for piecewise polynomials of degree k  = 0, 1, 2, 3 and k  = 2, 3, respectively, under the condition that the wind direction does not change. The theoretical results are verified by numerical examples. 
    more » « less
  3. In this paper, we discuss the stability and error estimates of the fully discrete schemes for linear conservation laws, which consists of an arbitrary Lagrangian–Eulerian discontinuous Galerkin method in space and explicit total variation diminishing Runge–Kutta (TVD-RK) methods up to third order accuracy in time. The scaling arguments and the standard energy analysis are the key techniques used in our work. We present a rigorous proof to obtain stability for the three fully discrete schemes under suitable CFL conditions. With the help of the reference cell, the error equations are easy to establish and we derive the quasi-optimal error estimates in space and optimal convergence rates in time. For the Euler-forward scheme with piecewise constant elements, the second order TVD-RK method with piecewise linear elements and the third order TVD-RK scheme with polynomials of any order, the usual CFL condition is required, while for other cases, stronger time step restrictions are needed for the results to hold true. More precisely, the Euler-forward scheme needs τ ≤ ρh 2 and the second order TVD-RK scheme needs $$ \tau \le \rho {h}^{\frac{4}{3}}$$ for higher order polynomials in space, where τ and h are the time and maximum space step, respectively, and ρ is a positive constant independent of τ and h . 
    more » « less
  4. New families of direct serendipity and direct mixed finite elements on general planar, strictly convex polygons were recently defined by the authors. The finite elements of index r are H1 and H(div) conforming, respectively, and approximate optimally to order r+1 while using the minimal number of degrees of freedom. The shape function space consists of the full set of polynomials defined directly on the element and augmented with a space of supplemental functions. The supplemental functions were constructed as rational functions, which can be difficult to integrate accurately using numerical quadrature rules when the index is high. This can result in a loss of accuracy in certain cases. In this work, we propose alternative ways to construct the supplemental functions on the element as continuous piecewise polynomials. One approach results in supplemental functions that are in Hp for any p≥1. We prove the optimal approximation property for these new finite elements. We also perform numerical tests on them, comparing results for the original supplemental functions and the various alternatives. The new piecewise polynomial supplements can be integrated accurately, and therefore show better robustness with respect to the underlying meshes used. 
    more » « less
  5. A computational framework for the solution of op- timal control problems with time-dependent partial differential equations (PDEs) is presented. The optimal control problem is transformed from a continuous time and space optimal control problem to a sparse nonlinear programming problem through state parameterization with Lagrange polynomials and discrete controls defined at Legendre-Gauss-Radau (LGR) points. The standard LGR collocation method is coupled with a modified Radau method to produce a collocation point on the typically noncollocated boundary. The newly collocated endpoint allows for a representation of the state derivative and control on the originally noncollocated boundary such that Neumann boundary conditions may be satisfied. Finally, the method developed in this paper is demonstrated on a viscous Burgers’ tracking problem and the results are compared to an existing solution. 
    more » « less