skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Connection Between Grad-Div Stabilized Stokes Finite Elements and Divergence-Free Stokes Finite Elements
Award ID(s):
2011733
PAR ID:
10223780
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International journal of numerical analysis and modeling
Volume:
17
Issue:
6
ISSN:
2617-8710
Page Range / eLocation ID:
839-857
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The MFEM (Modular Finite Element Methods) library is a high-performance C++ library for finite element discretizations. MFEM supports numerous types of finite element methods and is the discretization engine powering many computational physics and engineering applications across a number of domains. This paper describes some of the recent research and development in MFEM, focusing on performance portability across leadership-class supercomputing facilities, including exascale supercomputers, as well as new capabilities and functionality, enabling a wider range of applications. Much of this work was undertaken as part of the Department of Energy’s Exascale Computing Project (ECP) in collaboration with the Center for Efficient Exascale Discretizations (CEED). 
    more » « less
  2. Droplet formation happens in finite time due to the surface tension force. The linear stability analysis is useful to estimate the size of a droplet but fails to approximate the shape of the droplet. This is due to a highly nonlinear flow description near the point where the first pinch-off happens. A one-dimensional axisymmetric mathematical model was first developed by Eggers and Dupont [“Drop formation in a one-dimensional approximation of the Navier–Stokes equation,” J. Fluid Mech. 262, 205–221 (1994)] using asymptotic analysis. This asymptotic approach to the Navier–Stokes equations leads to a universal scaling explaining the self-similar nature of the solution. Numerical models for the one-dimensional model were developed using the finite difference [Eggers and Dupont, “Drop formation in a one-dimensional approximation of the Navier–Stokes equation,” J. Fluid Mech. 262, 205–221 (1994)] and finite element method [Ambravaneswaran et al., “Drop formation from a capillary tube: Comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops,” Phys. Fluids 14, 2606–2621 (2002)]. The focus of this study is to provide a robust computational model for one-dimensional axisymmetric droplet formation using the Portable, Extensible Toolkit for Scientific Computation. The code is verified using the Method of Manufactured Solutions and validated using previous experimental studies done by Zhang and Basaran [“An experimental study of dynamics of drop formation,” Phys. Fluids 7, 1184–1203 (1995)]. The present model is used for simulating pendant drops of water, glycerol, and paraffin wax, with an aspiration of extending the application to simulate more complex pinch-off phenomena. 
    more » « less
  3. We construct direct serendipity finite elements on general cuboidal hexahedra, which are 𝐻1-conforming and optimally approximate to any order. The new finite elements are direct in that the shape functions are directly defined on the physical element. Moreover, they are serendipity by possessing a minimal number of degrees of freedom satisfying the conformity requirement. Their shape function spaces consist of polynomials plus (generally nonpolynomial) supplemental functions, where the polynomials are included for the approximation property and supplements are added to achieve 𝐻1 -conformity. The finite elements are fully constructive. The shape function spaces of higher order 𝑟 ≥ 3 are developed first, and then the lower order spaces are constructed as subspaces of the third order space. Under a shape regularity assumption, and a mild restriction on the choice of supplemental functions, we develop the convergence properties of the new direct serendipity finite elements. Numerical results with different choices of supplements are compared on two mesh sequences, one regularly distorted and the other one randomly distorted. They all possess a convergence rate that aligns with the theory, while a slight difference lies in their performance. 
    more » « less
  4. null (Ed.)