Abstract Mangrove soils provide many important ecosystem services such as carbon sequestration, yet they are vulnerable to the negative impacts brought on by anthropogenic activities. Research in recent decades has shown a progressive loss of blue carbon in mangrove forests as they are converted to aquaculture, agriculture, and urban development. We seek to study the relationship between human population density and soil carbon stocks in urban mangrove forests to quantify their role in the global carbon budget. To this end, we conducted a global analysis, collecting mangrove soil carbon data from previous studies and calculating population density for each study location utilizing a recent database from the European Commission. Results indicate population density has a negative association with mangrove soil carbon stocks. When human population density reaches 300 people km−2, which is defined as ‘urban domains’ in the European Commission database, mangrove soil carbon is estimated to be lower than isolated mangrove forests by 37%. Nonetheless, after accounting for climatic factors in the model, we see the negative relationship between population density and soil carbon is reduced and is even non-significant in mixed effects models. This suggests population density is not a good measure for the direct effects of humans on mangrove ecosystems and further implies mangrove ecosystems in close proximity to very high population density can still possess valuable carbon stocks. Our work provides a better understanding of how soil carbon stocks in existing mangrove forests correlate with different levels of population density, underscores the importance of protecting existing mangroves and especially those in areas with high human population density, and calls for further studies on the association between human activities and mangrove forest carbon stocks. 
                        more » 
                        « less   
                    This content will become publicly available on January 1, 2026
                            
                            A “Golden Moment” for Soils and Society Presents Challenges and Opportunities for Soil Science
                        
                    
    
            We appear to be at a shining moment for interactions between soils and society. Popular interest in soils has increased along with interests in urban gardening, carbon sequestration, recognition of the vast biodiversity in soils, and the realisation that soils are a finite resource whose degradation has serious consequences. This increase in interest creates both opportunities and challenges for soil science. While there is great potential for increasing the diversity of people involved with soil science, key scientific and communication challenges need to be addressed for interactions between soils and society to be useful and productive. Here, I present case study issues on the mechanisms and limitations of carbon sequestration in soils and the need to restore and/or create new soils for specific uses, including urban agriculture and green infrastructure, to illustrate the opportunities and challenges associated with new societal interest in soil science. Addressing these issues requires advances in both basic and applied science, new participatory approaches to the design, execution, and interpretation of research, collaboration with multiple disciplines, including the social sciences, and improvements in the two‐way flow of information between science and society. Careful attention to these issues will attract new people to soil science, advance awareness of the importance of and threats to soils across the globe, and produce improvements in the quality of life for diverse human populations. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10565176
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- European Journal of Soil Science
- Volume:
- 76
- Issue:
- 1
- ISSN:
- 1351-0754
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)The soil carbon (C) stock, comprising soil organic C (SOC) and soil inorganic C (SIC) and being the largest reservoir of the terrestrial biosphere, is a critical part of the global C cycle. Soil has been a source of greenhouse gases (GHGs) since the dawn of settled agriculture about 10 millenia ago. Soils of agricultural ecosystems are depleted of their SOC stocks and the magnitude of depletion is greater in those prone to accelerated erosion by water and wind and other degradation processes. Adoption of judicious land use and science-based management practices can lead to re-carbonization of depleted soils and make them a sink for atmospheric C. Soils in humid climates have potential to increase storage of SOC and those in arid and semiarid climates have potential to store both SOC and SIC. Payments to land managers for sequestration of C in soil, based on credible measurement of changes in soil C stocks at farm or landscape levels, are also important for promoting adoption of recommended land use and management practices. In conjunction with a rapid and aggressive reduction in GHG emissions across all sectors of the economy, sequestration of C in soil (and vegetation) can be an important negative emissions method for limiting global warming to 1.5 or 2°C This article is part of the theme issue ‘The role of soils in delivering Nature's Contributions to People’.more » « less
- 
            ABSTRACT Managing soils to increase organic carbon storage presents a potential opportunity to mitigate and adapt to global change challenges, while providing numerous co‐benefits and ecosystem services. However, soils differ widely in their potential for carbon sequestration, and knowledge of biophysical limits to carbon accumulation may aid in informing priority regions. Consequently, there is great interest in assessing whether soils exhibit a maximum capacity for storing organic carbon, particularly within organo–mineral associations given the finite nature of reactive minerals in a soil. While the concept of soil carbon saturation has existed for over 25 years, recent studies have argued for and against its importance. Here, we summarize the conceptual understanding of soil carbon saturation at both micro‐ and macro‐scales, define key terminology, and address common concerns and misconceptions. We review methods used to quantify soil carbon saturation, highlighting the theory and potential caveats of each approach. Critically, we explore the utility of the principles of soil carbon saturation for informing carbon accumulation, vulnerability to loss, and representations in process‐based models. We highlight key knowledge gaps and propose next steps for furthering our mechanistic understanding of soil carbon saturation and its implications for soil management.more » « less
- 
            In contexts of regulatory neglect, it often falls to concerned individuals and community groups to identify and reduce people’s exposure to health-threatening pollutants in urban soils. The Our Soil project, based in Troy, New York (U.S.A.) proposed that engaging people in a “do-it-together” process of scientific inquiry could cultivate both appreciation of soil’s value and urgency to protect people from toxic soil pollution. In this paper, we develop the concept of “soil publics” and use it to critically reflect on how Our Soil used participatory research methods to measure urban soil pollution, exchange and value local knowledge, and cultivate a sense of concern for soil as a public issue. Soil publics come together through collective participatory practices, such as community gardening or, in this case, citizen science. This paper argues that when citizen science is pursued with a focus on producing soil publics, it is not just a means of collecting data about soil; it is part of the process of recognising past harms and transforming human-soil relations.more » « less
- 
            Abstract Inland waters receive large quantities of dissolved organic carbon (DOC) from soils and act as conduits for the lateral transport of this terrestrially derived carbon, ultimately storing, mineralizing, or delivering it to oceans. The lateral DOC flux plays a crucial role in the global carbon cycle, and numerous models have been developed to estimate the DOC export from different landscapes. We reviewed 34 published models and compared their characteristics to identify challenges in model applications and opportunities for future model development. We classified these models into three types: indicator-driven, hydrology-forced, and process-based DOC export simulation models. They differ mainly in their environmental inputs, simulation approaches for soil DOC production, leaching from soils to inland waters, and transit through inland waters. It is essential to consider landscape characteristics, climate conditions, available data, and research questions when selecting the most appropriate model. Given the substantial assumptions associated with these models, sufficient measurements are required to benchmark estimates. Accurate accounting of terrestrially derived DOC export to oceans requires incorporating the DOC produced in aquatic ecosystems and deposited with rainwater; otherwise, global export estimates may be overestimated by 40.7%. Additionally, improving the representation of mineralization and burial processes in inland waters allows for more accurate accounting of carbon sequestration through land ecosystems. When all the inland water processes are ignored or assuming DOC leaching is equivalent to DOC export, the loss of soil carbon through this lateral flux could be underestimated by 43.9%.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
