Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Warming across the western United States continues to reduce snowpack, lengthen growing seasons, and increase atmospheric demand, leading to uncertainty about moisture availability in montane forests. As many upland forests have thin soils and extensive rooting into weathered bedrock, deep vadose‐zone water may be a critical late‐season water source for vegetation and mitigate forest water stress. A key impediment to understanding the role of the deep vadose zone as a reservoir is quantifying the plant‐available water held there. We quantify the spatiotemporal dynamics of rock moisture held in the deep vadose zone in a montane catchment of the Rocky Mountains. Direct measurements of rock moisture were accompanied by monitoring of precipitation, transpiration, soil moisture, leaf‐water potentials, and groundwater. Using repeat nuclear magnetic resonance and neutron‐probe measurements, we found depletion of rock moisture among all our monitored plots. The magnitude of growing season depletion in rock moisture mirrored above‐ground vegetation density and transpiration, and depleted rock moisture was from ∼0.3 to 5 m below ground surface. Estimates of storage indicated weathered rock stored at least 4%–12% of mean annual precipitation. Persistent transpiration and discrepancies between estimated soil matric potentials and leaf‐water potentials suggest rock moisture may mitigate drought stress. These findings provide some of the first measurements of rock moisture use in the Rocky Mountains and indicated rock moisture use is not just confined to periods of drought or Mediterranean climates.more » « less
- 
            Abstract Summer streamflow predictions are critical for managing water resources; however, warming‐induced shifts from snow to rain regimes impact low‐flow predictive models. Additionally, reductions in snowpack drive earlier peak flows and lower summer flows across the western United States increasing reliance on groundwater for maintaining summer streamflow. However, it remains poorly understood how groundwater contributions vary interannually. We quantify recession limb groundwater (RLGW), defined as the proportional groundwater contribution to the stream during the period between peak stream flow and low flow, to predict summer low flows across three diverse western US watersheds. We ask (a) how do snow and rain dynamics influence interannual variations of RLGW contributions and summer low flows?; (b) which watershed attributes impact the effectiveness of RLGW as a predictor of summer low flows? Linear models reveal that RLGW is a strong predictor of low flows across all sites and drastically improves low‐flow prediction compared to snow metrics at a rain‐dominated site. Results suggest that strength of RLGW control on summer low flows may be mediated by subsurface storage. Subsurface storage can be divided into dynamic (i.e., variability saturated) and deep (i.e., permanently saturated) components, and we hypothesize that interannual variability in dynamic storage contribution to streamflow drives RLGW variability. In systems with a higher proportion of dynamic storage, RLGW is a better predictor of summer low flow because the stream is more responsive to dynamic storage contributions compared to deep‐storage‐dominated systems. Overall, including RLGW improved low‐flow prediction across diverse watersheds.more » « less
- 
            Abstract Understanding the severity and extent of near surface critical zone (CZ) disturbances and their ecosystem response is a pressing concern in the face of increasing human and natural disturbances. Predicting disturbance severity and recovery in a changing climate requires comprehensive understanding of ecosystem feedbacks among vegetation and the surrounding environment, including climate, hydrology, geomorphology, and biogeochemistry. Field surveys and satellite remote sensing have limited ability to effectively capture the spatial and temporal variability of disturbance and CZ properties. Technological advances in remote sensing using new sensors and new platforms have improved observations of changes in vegetation canopy structure and productivity; however, integrating measures of forest disturbance from various sensing platforms is complex. By connecting the potential for remote sensing technologies to observe different CZ disturbance vectors, we show that lower severity disturbance and slower vegetation recovery are more difficult to quantify. Case studies in montane forests from the western United States highlight new opportunities, including evaluating post‐disturbance forest recovery at multiple scales, shedding light on understory vegetation regrowth, detecting specific physiological responses, and refining ecohydrological modeling. Learning from regional CZ disturbance case studies, we propose future directions to synthesize fragmented findings with (a) new data analysis using new or existing sensors, (b) data fusion across multiple sensors and platforms, (c) increasing the value of ground‐based observations, (d) disturbance modeling, and (e) synthesis to improve understanding of disturbance.more » « less
- 
            Abstract Warming temperatures and precipitation changes are expected to alter water availability and increase drought stress in western North America, yet uncertainties remain in how concurrent changes in the amount and seasonality of precipitation interact with warming to affect hydrologic partitioning. We combined over a century of streamflow (Q) and climate observations with two decades of tree growth data and remotely sensed vegetation activity to quantify how temperature and precipitation interact to control hydrologic partitioning in the Front Range of Colorado, Boulder Creek Watershed. Temperature and precipitation significantly increased over the last five decades, with precipitation increasing primarily in winter (11.2 mm decade−1) and temperature increasing primarily during the growing season (0.12°C decade−1). In response to wetter winters and warmer summers, streamflow decreased −9.8 mm decade−1, with largest declines occurring during summer and autumn baseflow (−8.4 mm decade−1). Spring warming was associated with increases in episodic, short spring melt events, earlier and slower snowmelt and an increase in fraction of precipitation available to plants (catchment wetting or W). Warming during the growing season resulted in an increase in the fraction of W lost as evapotranspiration (ET), earlier and lower peaks in remotely sensed normalized difference vegetation index (NDVI) and lower tree ring width index (RWI). These analyses highlight that vegetation is becoming increasingly water limited even as increases in precipitation and slower melt increase plant water availability. Further, catchment‐derived metrics like the Horton Index (ET/W) provide insight in to how simultaneous changes in temperature, precipitation and melt impact vegetation across complex watersheds.more » « less
- 
            Beavers (Castor canadensis) have not been adequately included in critical zone research, yet they can affect multiple critical zone processes across the terrestrial-aquatic interface of river corridors. River corridors (RC) provide a disproportionate amount of ecosystem services. Over time, beaver activity, including submersion of woody vegetation, burrowing, dam building, and abandonment, can impact critical zone processes in the river corridor by influencing landscape evolution, biodiversity, geomorphology, hydrology, primary productivity, and biogeochemical cycling. In particular, they can effectively restore degraded riparian areas and improve water quality and quantity, causing implications for many important ecosystem services. Beaver-mediated river corridor processes in the context of a changing climate require investigation to determine how both river corridor function and critical zone processes will shift in the future. Recent calls to advance river corridor research by leveraging a critical zone perspective can be strengthened through the explicit incorporation of animals, such as beavers, into research projects over space and time. This article illustrates how beavers modify the critical zone across different spatiotemporal scales, presents research opportunities to elucidate the role of beavers in influencing Western U.S. ecosystems, and, more broadly, demonstrates the importance of integrating animals into critical zone science.more » « lessFree, publicly-accessible full text available February 12, 2026
- 
            White, Timothy; Provenzale, Antonello (Ed.)Free, publicly-accessible full text available November 28, 2025
- 
            Free, publicly-accessible full text available November 1, 2025
- 
            Coarse particulate organic matter (CPOM; organic matter 1–100 mm in diameter, excluding small wood) stored in streams provides an important energy source for aquatic ecosystems, and CPOM transport provides downstream energy subsidies and is a pathway for watershed carbon export. However, we lack understanding of the magnitude of and processes influencing CPOM storage and transport in headwater streams. We assessed how geomorphic complexity and hydrologic regime influence CPOM transport and storage in the Colorado Front Range, USA. We compared CPOM transport during snowmelt in a stream reach with high retentive feature (e.g., wood, cobbles, and other features) frequency to a reach with low retentive feature frequency, assessing how within-a-reach geomorphic context influences CPOM transport. We also compared CPOM transport in reaches with differing valley geometry (two confined reaches versus a wide, multi-thread river bead) to assess the influence of geomorphic variations occurring over larger spatial extents. Additionally, we compared CPOM storage in accumulations in reaches (n= 14) with flowing water or dry conditions in late summer and investigated how small pieces of organic matter [e.g., woody CPOM and small wood (>1 min length and 0.05–1 min diameter or 0.5–1 min length and >0.1 min diameter)] influence CPOM storage. We found that within-a-reach retentive feature frequency did not influence CPOM transport. However, valley geometry influenced CPOM transport, with a higher CPOM transport rate (median: 1.53 g min−1) downstream of a confined stream reach and a lower CPOM transport rate (median: 0.13 g min−1) downstream of a low gradient, multi-thread river bead. Additionally, we found that particulate organic carbon (POC) export (0.063 Mg C) in the form of CPOM was substantially lower than dissolved organic carbon (DOC) export (12.3 Mg C) in one of these headwater streams during the 2022 water year. Dry reaches stored a higher volume of CPOM (mean = 29.18 m3ha−1) compared to reaches with flowing water (15.75 m3ha−1), and woody CPOM pieces trapped 37% of CPOM accumulations. Our results demonstrate that the influence of geomorphic context on CPOM transport depends on the scale and type of geomorphic complexity, POC may be lower than DOC export in some headwater streams, and small woody organic material is important for trapping CPOM small streams.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
