Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Buildings in the U.S. are responsible for approximately 40% of energy and 70% of the electricity consumption. To address rising greenhouse gas emissions and climate changes, various studies have explored strategies to reduce energy consumption in buildings. One opportunity to improve the building envelope performance is through improvements to fenestrations, particularly complex multi-layer fenestration systems for exterior windows. Windows are the least thermally efficient of all components in a typical building envelope. Windows also permit solar radiation into a building, which significantly increases the building energy consumption during the summer season. Meanwhile, windows are necessary to provide occupants with natural light, a view to the outside, and to support productivity. Thus, there is a need to strike a balance between energy savings, and the thermal and visual comfort impacted by windows. Traditionally, shading devices are one method used to adjust the amount of heat and light entering an interior space. However, such shading devices are typically operated manually by occupants, and are seldom used effectively over time. Currently the building energy simulation program EnergyPlus, has limited capabilities to model shading devices, and more limited abilities to model dynamic fenestrations. In this study, thus, we propose to model and validate several types of automated multi-layer fenestration elements, using co-simulation of EnergyPlus and Radiance using laboratory-collected data. EnergyPlus was used to model energy consumption and thermal comfort while Radiance was used to model lighting levels. BCVTB was used to interface between EnergyPlus and Radiance to facilitate co-simulation. To validate the models, experimental data was collected from 5 illuminance sensors in an exterior office space located in a test facility in Ankeny, IA. This model methodology can be used to improve the flexibility and modeling capabilities of dynamic fenestration elements for building energy performance evaluation methods.more » « less
-
As the energy consumption from residential and commercial buildings makes up approximately three-quarters of the U.S. electricity loads, analyzing building energy consumption behavior becomes essential for effective power grid operation. An accurate physics-based building energy simulator that is built on first principles can predict an individual building’s energy response, such as energy consumption and indoor environmental conditions under different weather and operational control scenarios. In the building energy simulator, several parameters that specify building characteristics need to be set a priori. Among those parameters, some parameters are season-dependent, whereas other parameters should be globally employed throughout a year. Existing studies in parameter calibration ignore such heterogeneity, which causes suboptimal calibration results. This study presents a new calibration approach that considers the seasonal dependency.more » « less
-
null (Ed.)In the United States, approximately 40% of the primary energy use and 72% of the electricity use belong to the building sector. This shows the significance of studying the potential for reducing the building energy consumption and buildings’ sustainability for ensuring a sustainable development. Therefore, many different efforts focus on reducing the energy consumption of residential buildings. Data-validated building energy modeling methods are among the studies for such an effort, particularly, by enabling the identification of the potential savings associated with different potential retrofit strategies. However, there are many uncertainties that can impact the accuracy of such energy model results, one of which is the weather input data. In this study, to investigate the impact of spatial temperature variation on building energy consumption, six weather stations in an urban area with various urban density were selected. A validated energy model was developed using energy audit data and high-frequency electricity consumption of a residential building in Austin, TX. The energy consumption of the modeled building was compared using the selected six weather datasets. The results show that energy use of a building in an urban area can be impacted by up to 12% due to differences in urban density. This indicates the importance of weather data in predicting energy consumption of the building. The methodology and results of this study can be used by planners and decision makers to reduce uncertainties in estimating the building energy use in urban scale.more » « less
-
Among various elements of urban infrastructure, there is significant opportunity to improve existing buildings’ sustainability, considering that approximately 40% of the total primary energy consumption and 72% of electricity consumption in United States is consumed by the building sector. Many different efforts focus on reducing the energy consumption of residential buildings. Data-validated building energy modeling methods serve the role of supporting this effort, by enabling the identification of the potential savings associated with different potential retrofit strategies. However there are many uncertainties that can impact the accuracy of energy model results, one of which is the weather input data. Measured weather data inputs located at each building can help address this concern, however, weather station data collection for each building is also costly and typically not feasible. Some weather station data is already collected, however, these are generally located at airports rather than near buildings, and thus do not capture local, spatially-varying weather conditions which are documented to occur, particularly in urban areas. In this study we address the impact of spatial temperature differences on residential building energy use. An energy model was developed in EnergyPlus for a residential building located in Mueller neighborhood of Austin, TX, and was validated using actual hourly measured electricity consumption. Using the validated model, the impact of measured spatial temperature differences on building energy consumption were investigated using multiple weather stations located throughout the urban area with different urban fractions. The results indicate that energy consumption of a residential building in a city with a 10% higher urban fraction would increase by approximately 10%. This variation in energy consumption is likely due to the impact of UHI effects occurring in urban areas with high densities.more » « less
-
null (Ed.)The energy consumption of buildings at the city scale is highly influenced by the weather conditions where the buildings are located. Thus, having appropriate weather data is important for improving the accuracy of prediction of city-level energy consumption and demand. Typically, local weather station data from the nearest airport or military base is used as input into building energy models. However, the weather data at these locations often differs from the local weather conditions experienced by an urban building, particularly considering most ground-based weather stations are located far from many urban areas. The use of the Weather Research and Forecasting Model (WRF) coupled with an Urban Canopy Model (UCM) provides means to predict more localized variations in weather conditions. However, despite advances made in climate modeling, systematic differences in ground-based observations and model results are observed in these simulations. In this study, a comparison between WRF-UCM model results and data from 40 ground-based weather station in Austin, TX is conducted to assess existing systematic differences. Model validations was conducted through an iterative process in which input parameters were adjusted to obtain to best possible fit to the measured data. To account for the remaining systemic error, a statistical approach with spatial and temporal bias correction is implemented. This method improves the quality of the WRF-UCM model results by identifying the statistic properties of the systematic error and applying several bias correction techniques.more » « less