A<sc>bstract</sc> A search for “emerging jets” produced in proton-proton collisions at a center-of-mass energy of 13 TeV is performed using data collected by the CMS experiment corresponding to an integrated luminosity of 138 fb−1. This search examines a hypothetical dark quantum chromodynamics (QCD) sector that couples to the standard model (SM) through a scalar mediator. The scalar mediator decays into an SM quark and a dark sector quark. As the dark sector quark showers and hadronizes, it produces long-lived dark mesons that subsequently decay into SM particles, resulting in a jet, known as an emerging jet, with multiple displaced vertices. This search looks for pair production of the scalar mediator at the LHC, which yields events with two SM jets and two emerging jets at leading order. The results are interpreted using two dark sector models with different flavor structures, and exclude mediator masses up to 1950 (1950) GeV for an unflavored (flavor-aligned) dark QCD model. The unflavored results surpass a previous search for emerging jets by setting the most stringent mediator mass exclusion limits to date, while the flavor-aligned results provide the first direct mediator mass exclusion limits to date.
more »
« less
The phenomenology of quadratically coupled ultra light dark matter
A<sc>bstract</sc> We discuss models of ultralight scalar Dark Matter (DM) with linear and quadratic couplings to the Standard Model (SM). In addition to studying the phenomenology of linear and quadratic interactions separately, we examine their interplay. We review the different experiments that can probe such interactions and present the current and expected future bounds on the parameter space. In particular, we discuss the scalar field solution presented in [A. Hees, O. Minazzoli, E. Savalle, Y. V. Stadnik and P. Wolf, Phys.Rev.D 98 (2018) 6, 064051], and extend it to theories that capture both the linear and the quadratic couplings of the Dark Matter (DM) field to the Standard Model (SM). Furthermore, we discuss the theoretical aspects and the corresponding challenges for natural models in which the quadratic interactions are of phenomenological importance.
more »
« less
- Award ID(s):
- 2016244
- PAR ID:
- 10508173
- Publisher / Repository:
- JHEP
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2023
- Issue:
- 10
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract We study a renormalizable model of Dirac fermion dark matter (DM) that communicates with the Standard Model (SM) through a pair of mediators — one scalar, one fermion — in the representation ( 6 , 1 , $$ \frac{4}{3} $$ 4 3 ) of the SM gauge group SU(3) c × SU(2) L × U(1) Y . While such assignments preclude direct coupling of the dark matter to the Standard Model at tree level, we examine the many effective operators generated at one-loop order when the mediators are heavy, and find that they are often phenomenologically relevant. We reinterpret dijet and pair-produced resonance and jets + $$ {E}_{\mathrm{T}}^{\mathrm{miss}} $$ E T miss searches at the Large Hadron Collider (LHC) in order to constrain the mediator sector, and we examine an array of DM constraints ranging from the observed relic density Ω χ $$ {h}_{\mathrm{Planck}}^2 $$ h Planck 2 to indirect and direct searches for dark matter. Tree-level annihilation, available for DM masses starting at the TeV scale, is required in order to produce Ω χ $$ {h}_{\mathrm{Planck}}^2 $$ h Planck 2 through freeze-out, but loops — led by the dimension-five DM magnetic dipole moment — are nonetheless able to produce signals large enough to be constrained, particularly by the XENON1T experiment. In some benchmarks, we find a fair amount of parameter space left open by experiment and compatible with freeze-out. In other scenarios, however, the open space is quite small, suggesting a need for further model-building and/or non-standard cosmologies.more » « less
-
We consider machine learning techniques associated with the application of a boosted decision tree (BDT) to searches at the Large Hadron Collider (LHC) for pair-produced lepton partners which decay to leptons and invisible particles. This scenario can arise in the minimal supersymmetric Standard Model (MSSM), but can be realized in many other extensions of the Standard Model (SM). We focus on the case of intermediate mass splitting ( ) between the dark matter (DM) and the scalar. For these mass splittings, the LHC has made little improvement over LEP due to large electroweak backgrounds. We find that the use of machine learning techniques can push the LHC well past discovery sensitivity for a benchmark model with a lepton partner mass of , for an integrated luminosity of , with a signal-to-background ratio of . The LHC could exclude models with a lepton partner mass as large as with the same luminosity. The use of machine learning techniques in searches for scalar lepton partners at the LHC could thus definitively probe the parameter space of the MSSM in which scalar muon mediated interactions between SM muons and Majorana singlet DM can both deplete the relic density through dark matter annihilation and satisfy the recently measured anomalous magnetic moment of the muon. We identify several machine learning techniques which can be useful in other LHC searches involving large and complex backgrounds. Published by the American Physical Society2024more » « less
-
Abstract (Ultra)light spin-1 particles — dark photons — can constitute all of dark matter (DM) and have beyond Standard Model couplings. This can lead to a coherent, oscillatory signature in terrestrial detectors that depends on the coupling strength. We provide a signal analysis and statistical framework for inferring the properties of such DM by taking into account (i) the stochastic and (ii) the vector nature of the underlying field, along with (iii) the effects due to the Earth's rotation. Owing to equipartition, on time scales shorter than the coherence time the DM field vector typically traces out a fixed ellipse. Taking this ellipse and the rotation of the Earth into account, we highlight a distinctive three-peak signal in Fourier space that can be used to constrain DM coupling strengths. Accounting for all three peaks, we derive latitude-independent constraints on such DM couplings, unlike those stemming from single-peak studies. We apply our framework to the search for ultralightB - LDM using optomechanical sensors, demonstrating the ability to delve into previously unprobed regions of this DM candidate's parameter space.more » « less
-
A<sc>bstract</sc> One contribution to any dark sector’s abundance comes from its gravitational production during inflation. If the dark sector is weakly coupled to the inflaton and the Standard Model, this can be its only production mechanism. For non-interacting dark sectors, such as a free massive fermion or a free massive vector field, this mechanism has been studied extensively. In this paper we show, via the example of dark massive QED, that the presence of interactions can result in a vastly different mass for the dark matter (DM) particle, which may well coincide with the range probed by upcoming experiments. In the context of dark QED we study the evolution of the energy density in the dark sector after inflation. Inflation produces a cold vector condensate consisting of an enormous number of bosons, which via interesting processes — Schwinger pair production, strong field electromagnetic cascades, and plasma dynamics — transfers its energy to a small number of “dark electrons” and triggers thermalization of the dark sector. The resulting dark electron DM mass range is from 50 MeV to 30 TeV, far different from both the 10−5eV mass of the massive photon dark matter in the absence of dark electrons, and from the 109GeV dark electron mass in the absence of dark photons. This can significantly impact the search strategies for dark QED and, more generally, theories with a self-interacting DM sector. In the presence of kinetic mixing, a dark electron in this mass range can be searched for with upcoming direct detection experiments, such as SENSEI-100g and OSCURA.more » « less