skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ratchet loading and multi-ensemble operation in an optical lattice clock
Abstract We demonstrate programmable control over the spatial distribution of ultra-cold atoms confined in an optical lattice. The control is facilitated through a combination of spatial manipulation of the magneto-optical trap and atomic population shelving to a metastable state. We first employ the technique to load an extended (5 mm) atomic sample with uniform density in an optical lattice clock (OLC), reducing atomic interactions and realizing remarkable frequency homogeneity across the atomic cloud. We also prepare multiple spatially separated atomic ensembles, and realize multi-ensemble clock operation within the standard one-dimensional (1D) OLC architecture. Leveraging this technique, we prepare two oppositely spin-polarized ensembles that are independently addressable, offering a platform for implementing spectroscopic protocols for enhanced tracking of local oscillator phase. Finally, we demonstrate a relative fractional frequency instability at one second of 2.4 ( 1 ) × 10 17 between two ensembles, useful for characterization of intra-lattice differential systematics.  more » « less
Award ID(s):
2012117 2016244
PAR ID:
10533003
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Quantum Science and Technology
Volume:
9
Issue:
4
ISSN:
2058-9565
Page Range / eLocation ID:
045023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We analyze an optical atomic clock using two-photon 5 S 1 / 2 4 D J transitions in rubidium. Four one- and two-color excitation schemes to probe the 4 D 3 / 2 and 4 D 5 / 2 fine-structure states are considered in detail. We compare key characteristics of Rb 4 D J and 5 D 5 / 2 two-photon clocks. The 4 D J clock features a high signal-to-noise ratio due to two-photon decay at favorable wavelengths, low dc electric and magnetic susceptibilities, and minimal black-body shifts. Ac Stark shifts from the clock interrogation lasers are compensated by two-color Rabi-frequency matching. We identify a ‘magic’ wavelength near 1060 nm, which allows for in-trap, Doppler-free clock-transition interrogation with lattice-trapped cold atoms. From our analysis of clock statistics and systematics, we project a quantum-noise-limited relative clock stability at the 10 13 / τ ( s ) -level, with integration timeτin seconds, and a relative accuracy of 10 13 . We describe a potential architecture for implementing the proposed clock using a single telecom clock laser at 1550 nm, which is conducive to optical communication and long-distance clock comparisons. Our work could be of interest in efforts to realize small and portable Rb clocks and in high-precision measurements of atomic properties of Rb 4 D J -states. 
    more » « less
  2. Abstract Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronic X ˜ 2 Σ + ( 010 ) state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the X ˜ 2 Σ + ( 010 ) state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of 174 YbOH using high-resolution optical spectroscopy on the nominally forbidden X ˜ 2 Σ + ( 010 ) A ˜ 2 Π 1 / 2 ( 000 ) transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the X ˜ 2 Σ + ( 010 ) state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the X ˜ 2 Σ + ( 010 ) state and fit the molecule-frame dipole moment to D m o l = 2.16 ( 1 ) Dand the effective electrong-factor to g S = 2.07 ( 2 ) . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited A ˜ 2 Π 1 / 2 ( 000 ) state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules. 
    more » « less
  3. Abstract A test of lepton flavor universality in B ± K ± μ + μ and B ± K ± e + e decays, as well as a measurement of differential and integrated branching fractions of a nonresonant B ± K ± μ + μ decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at s = 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions B ( B ± K ± μ + μ ) to B ( B ± K ± e + e ) is determined from the measured double ratio R ( K ) of these decays to the respective branching fractions of the B ± J / ψ K ± with J / ψ μ + μ and e + e decays, which allow for significant cancellation of systematic uncertainties. The ratio R ( K ) is measured in the range 1.1 < q 2 < 6.0 GeV 2 , whereqis the invariant mass of the lepton pair, and is found to be R ( K ) = 0.78 0.23 + 0.47 , in agreement with the standard model expectation R ( K ) 1 . This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the sameq2range, B ( B ± K ± μ + μ ) = ( 12.42 ± 0.68 ) × 10 8 , is consistent with the present world-average value and has a comparable precision. 
    more » « less
  4. Abstract We continue earlier efforts in computing the dimensions of tangent space cohomologies of Calabi–Yau manifolds using deep learning. In this paper, we consider the dataset of all Calabi–Yau four-folds constructed as complete intersections in products of projective spaces. Employing neural networks inspired by state-of-the-art computer vision architectures, we improve earlier benchmarks and demonstrate that all four non-trivial Hodge numbers can be learned at the same time using a multi-task architecture. With 30% (80%) training ratio, we reach an accuracy of 100% for h ( 1 , 1 ) and 97% for h ( 2 , 1 ) (100% for both), 81% (96%) for h ( 3 , 1 ) , and 49% (83%) for h ( 2 , 2 ) . Assuming that the Euler number is known, as it is easy to compute, and taking into account the linear constraint arising from index computations, we get 100% total accuracy. 
    more » « less
  5. Abstract This work describes the apparatus for NIST-F4, an updated cesium atomic fountain at the National Institute of Standards and Technology (NIST), and presents an accuracy evaluation of the fountain as a primary frequency standard. The fountain uses optical molasses to laser cool a cloud of cesium atoms and launch it vertically in a fountain geometry. In high-density mode, the fractional frequency stability of NIST-F4 is σ y ( τ ) = 1.5 × 10 13 / τ , whereτis the measurement time in seconds. The short-term stability is limited by quantum projection noise and by phase noise from the local oscillator, an oven-controlled crystal oscillator operating at 5 MHz. Systematic frequency shifts and their uncertainties have been evaluated, resulting in a systematic (type B) fractional frequency uncertainty σ B = 2.2 × 10 16
    more » « less