Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Adversarial machine learning (AML) research is concerned with robustness of machine learning models and algorithms to malicious tampering. Originating at the intersection between machine learning and cybersecurity, AML has come to have broader research appeal, stretching traditional notions of security to include applications of computer vision, natural language processing, and network science. In addition, the problems of strategic classification, algorithmic recourse, and counterfactual explanations have essentially the same core mathematical structure as AML, despite distinct motivations. I give a simplified overview of the central problems in AML, and then discuss both the security-motivated AML domains, and the problems above unrelated to security. These together span a number of important AI subdisciplines, but can all broadly be viewed as concerned with trustworthy AI. My goal is to clarify both the technical connections among these, as well as the substantive differences, suggesting directions for future research.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available