skip to main content

Search for: All records

Award ID contains: 2021693

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Residential solar installations are becoming increasingly popular among homeowners. However, renters and homeowners living in shared buildings cannot go solar as they do not own the shared spaces. Community-owned solar arrays and energy storage have emerged as a solution, which enables ownership even when they do not own the property or roof. However, such community-owned systems do not allow individuals to control their share for optimizing a home’s electricity bill. To overcome this limitation, inspired by the concept of virtualization in operating systems, we propose virtual community-owned solar and storage—a logical abstraction to allow individuals to independently control their share of the system. We argue that such individual control can benefit all owners and reduce their reliance on grid power. We present mechanisms and algorithms to provide a virtual solar and battery abstraction to users and understand their cost benefits. In doing so, our comparison with a traditional community-owned system shows that our AutoShare approach can achieve the same global savings of 43% while providing independent control of the virtual system. Further, we show that independent energy sharing through virtualization provides an additional 8% increase in savings to individual owners.

  2. Free, publicly-accessible full text available June 28, 2023
  3. Free, publicly-accessible full text available June 25, 2023
  4. Flooding risk results from complex interactions between hydrological hazards (e.g., riverine inundation during periods of heavy rainfall), exposure, vulnerability (e.g., the potential for structural damage or loss of life), and resilience (how well we recover, learn from, and adapt to past floods). Building on recent coupled conceptualizations of these complex interactions, we characterize human–flood interactions (collective memory and risk-enduring attitude) at a more comprehensive scale than has been attempted to date across 50 US metropolitan statistical areas with a sociohydrologic (SH) model calibrated with accessible local data (historical records of annual peak streamflow, flood insurance loss claims, active insurance policy records, and population density). A cluster analysis on calibrated SH model parameter sets for metropolitan areas identified two dominant behaviors: 1) “risk-enduring” cities with lower flooding defenses and longer memory of past flood loss events and 2) “risk-averse” cities with higher flooding defenses and reduced memory of past flooding. These divergent behaviors correlated with differences in local stream flashiness indices (i.e., the frequency and rapidity of daily changes in streamflow), maximum dam heights, and the proportion of White to non-White residents in US metropolitan areas. Risk-averse cities tended to exist within regions characterized by flashier streamflow conditions, larger dams, andmore »larger proportions of White residents. Our research supports the development of SH models in urban metropolitan areas and the design of risk management strategies that consider both demographically heterogeneous populations, changing flood defenses, and temporal changes in community risk perceptions and tolerance.

    « less