skip to main content

Title: A new method to detect changes in displacement rates of slow-moving landslides using InSAR time series
Abstract

Slow-moving landslides move downslope at velocities that range from mm year−1to m year−1. Such deformations can be measured using satellite-based synthetic aperture radar interferometry (InSAR). We developed a new method to systematically detect and quantify accelerations and decelerations of slowly deforming areas using InSAR displacement time series. The displacement time series are filtered using an outlier detector and subsequently piecewise linear functions are fitted to identify changes in the displacement rate (i.e., accelerations or decelerations). Grouped accelerations and decelerations are inventoried as indicators of potential unstable areas. We tested and refined our new method using a high-quality dataset from the Mud Creek landslide, CA, USA. Our method detects accelerations and decelerations that coincide with those previously detected by manual examination. Second, we tested our method in the region around the Mazar dam and reservoir in Southeast Ecuador, where the time series data were of considerably lower quality. We detected accelerations and decelerations occurring during the entire study period near and upslope of the reservoir. Application of our method results in a wealth of information on the dynamics of the surface displacement of hillslopes and provides an objective way to identify changes in displacement rates. The displacement rates, their spatial more » variation, and the timing of accelerations and decelerations can be used to study the physical behavior of a slow-moving slope or for regional hazard assessment by linking the timing of changes in displacement rates to landslide causal and triggering factors.

« less
Authors:
; ; ;
Publication Date:
NSF-PAR ID:
10369335
Journal Name:
Landslides
Volume:
19
Issue:
9
Page Range or eLocation-ID:
p. 2233-2247
ISSN:
1612-510X
Publisher:
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. To explore the sensitivity of rivers to blocking from landslidedebris, we exploit two similar geomorphic settings in California'sFranciscan mélange where slow-moving landslides, often referred to asearthflows, impinge on river channels with drainage areas that differ by afactor of 30. Analysis of valley widths and river long profiles over∼19 km of Alameda Creek (185 km2 drainage area) andArroyo Hondo (200 km2 drainage area) in central California shows avery consistent picture in which earthflows that intersect these channelsforce tens of meters of gravel aggradation for kilometers upstream, leadingto apparently long-lived sediment storage and channel burial at these sites.In contrast, over a ∼30 km section of the Eel River (5547 km2 drainage area), there are no knickpoints or aggradation upstreamof locations where earthflows impinge on its channel. Hydraulic andhydrologic data from United States Geological Survey (USGS) gages on Arroyo Hondo and the Eel River, combinedwith measured size distributions of boulders input by landslides for bothlocations, suggest that landslide derived boulders are not mobile at eithersite during the largest floods (>2-year recurrence) with field-measured flow depths. We therefore argue that boulder transport capacity isan unlikely explanation for the observed difference in sensitivity tolandslide inputs. At the same time, we find that earthflow fluxes per unitchannel width are nearlymore »identical for Oak Ridge earthflow on Arroyo Hondo,where evidence for blocking is clear, and for the Boulder Creek earthflow onthe Eel River, where evidence for blocking is absent. These observationssuggest that boulder supply is also an unlikely explanation for the observedmorphological differences along the two rivers. Instead, we argue that thedramatically different sensitivity of the two locations to landslideblocking is related to differences in channel width relative to typicalseasonal displacements of earthflows. A synthesis of seasonal earthflowdisplacements in the Franciscan mélange shows that the channel width ofthe Eel River is ∼5 times larger than the largest annualseasonal displacement. In contrast, during wet winters, earthflows arecapable of crossing the entire channel width of Arroyo Hondo and AlamedaCreek. In support of this interpretation, satellite imagery shows thatimmobile earthflow-derived boulders are generally confined to the edges ofthe channel on the Eel River. By contrast, immobile earthflow-derivedboulders jam the entire channel on Arroyo Hondo. Our results imply that lower drainage area reaches of earthflow-dominated catchments may be particularly prone to blocking. By inhibiting the upstreampropagation of base-level signals, valley-blocking earthflows may thereforepromote the formation of so-called “relict topography”.« less
  2. SUMMARY InSAR displacement time-series are emerging as a valuable product to study a number of Earth processes. One challenge to current time-series processing methods, however, is that when large earthquakes occur, they can leave sharp coseismic steps in the time-series. These discontinuities can cause current atmospheric correction and noise smoothing algorithms to break down, as these algorithms commonly assume that deformation is steady through time. Here, we aim to remedy this by exploring two methods for correcting earthquake offsets in InSAR time-series: a simple difference offset estimate (SDOE) process and a multiparameter offset estimate (MPOE) parametric time-series inversion technique. We apply these methods to a 2-yr time-series of Sentinel-1 interferograms spanning the 2019 Ridgecrest, CA earthquake sequence. Descending track results indicate that the SDOE method precisely corrects for only 20 per cent of the coseismic offsets at 62 study locations included in our scene and only partially corrects or sometimes overcorrects for the rest of our study sites. On the other hand, the MPOE estimate method successfully corrects the coseismic offset for the majority of sites in our analysis. This MPOE method allows us to produce InSAR time-series and data-derived estimates of deformation during each phase of the earthquake cycle.more »In order to better isolate and estimate the signal of post-seismic lithospheric deformation in the InSAR time-series, we apply a GNSS-based correction to our interferograms. This correction ties the interferograms to median-filtered weekly GNSS displacements and removes additional atmospheric artefacts. We present InSAR-based estimates of post-seismic deformation for the area around the Ridgecrest rupture, as well as a 2-yr coseismic-corrected, GNSS-corrected InSAR time-series data set. This GNSS-corrected InSAR time-series will enable future modelling of post-seismic processes such as afterslip in the near field of the rupture, poroelastic deformation at intermediate distances and viscoelastic deformation at longer timescales in the far field.« less
  3. Abstract

    Experimentally elevated testosterone (T) often leads to enhanced aggression, with examples across many different species, including both males and females. Indeed, the relationship between T and aggression is among the most well-studied and fruitful areas of research at the intersection of behavioral ecology and endocrinology. This relationship is also hypothesized to be bidirectional (i.e., T influences aggression, and aggression influences T), leading to four key predictions: (1) Individuals with higher T levels are more aggressive than individuals with lower T. (2) Seasonal changes in aggression mirror seasonal changes in T secretion. (3) Aggressive territorial interactions stimulate increased T secretion. (4) Temporary elevations in T temporarily increase aggressiveness. These predictions cover a range of timescales, from a single snapshot in time, to rapid fluctuations, and to changes over seasonal timescales. Adding further complexity, most predictions can also be addressed by comparing among individuals or with repeated sampling within individuals. In our review, we explore how the spectrum of results across predictions shapes our understanding of the relationship between T and aggression. In all cases, we can find examples of results that do not support the initial predictions. In particular, we find that Predictions 1–3 have been tested frequently, especially usingmore »an among-individual approach. We find qualitative support for all three predictions, though there are also many studies that do not support Predictions 1 and 3 in particular. Prediction 4, on the other hand, is something that we identify as a core underlying assumption of past work on the topic, but one that has rarely been directly tested. We propose that when relationships between T and aggression are individual-specific or condition-dependent, then positive correlations between the two variables may be obscured or reversed. In essence, even though T can influence aggression, many assumed or predicted relationships between the two variables may not manifest. Moving forward, we urge greater attention to understanding how and why it is that these bidirectional relationships between T and aggression may vary among timescales and among individuals. In doing so, we will move toward a deeper understanding on the role of hormones in behavioral adaptation.

    « less
  4. SUMMARY

    A good understanding of earthquake rupture segmentation is important to characterize fault geometries at depth for follow-up tectonic, stress-field or other analyses. We propose a data-driven strategy and develop pre-optimization methods to support finite fault inversions with independent prior estimates on earthquake source parameters. The first method we develop is a time-domain, multi-array and novel multiphase backprojection (BP) of teleseismic data. This method infers the spatio-temporal evolution of the rupture process, including a potential occurrence of rupture segmentation. Secondly, we apply image analysis methods on InSAR surface displacement maps to infer rupture characteristics (e.g. strike and length) and the number of potential segments. Both methods can provide model-independent constraints on fault location, dimension, orientation and rupture timing, applicable to form priors of model parameters before detailed modelling. We demonstrate and test our methods based on synthetic tests and an application to the 25.11.2016 Muji Mw 6.6 earthquake. Our results indicate segmentation and bilateral rupturing for the 2016 Muji earthquake. The results of the BP of the Muji Mw 6.6 earthquake using high-frequency filtered teleseismic waveforms in particular shows the capability to illuminate the rupture history with the potential to resolve the start and stop phases of individual fault segments.

  5. Optical projection tomography (OPT) is a powerful imaging modality for attaining high resolution absorption and fluorescence imaging in tissue samples and embryos with a diameter of roughly 1 mm. Moving past this 1 mm limit, scattered light becomes the dominant fraction detected, adding significant “blur” to OPT. Time-domain OPT has been used to select out early-arriving photons that have taken a more direct route through the tissue to reduce detection of scattered photons in these larger samples, which are the cause of image domain blur1. In addition, it was recently demonstrated by our group that detection of scattered photons could be further depressed by running in a “deadtime” regime where laser repetition rates are selected such that the deadtime incurred by early-arriving photons acts as a shutter to later-arriving scattered photons2. By running in this deadtime regime, far greater early photon count rates are achievable than with standard early photon OPT. In this work, another advantage of this enhanced early photon collection approach is demonstrated: specifically, a significant improvement in signal-to-noise ratio. In single photon counting detectors, the main source of noise is “afterpulsing,” which is essentially leftover charge from a detected photon that spuriously results in a second photonmore »count. When the arrival of the photons are time-stamped by the time correlated single photon counting (TCSPC) module , the rate constant governing afterpusling is slow compared to the time-scale of the light pulse detected so it is observed as a background signal with very little time-correlation. This signal is present in all time-gates and so adds noise to the detection of early photons. However, since the afterpusling signal is proportional to the total rate of photon detection, our enhanced early photon approach is uniquely able to have increased early photon counts with no appreciable increase in the afterpulsing since overall count-rate does not change. This is because as the rate of early photon detection goes up, the rate of late-photon detection reduces commensurately, yielding no net change in the overall rate of photons detected. This hypothesis was tested on a 4 mm diameter tissue-mimicking phantom (μa = 0.02 mm-1, μs’ = 1 mm-1) by ranging the power of a 10 MHz pulse 780-nm laser with pulse spread of < 100 fs (Calmar, USA) and an avalanche photodiode (MPD, Picoquant, Germany) and TCSPC module (HydraHarp, Picoquant, Germany) for light detection. Details of the results are in Fig. 1a, but of note is that we observed more than a 60-times improvement in SNR compared to conventional early photon detection that would have taken 1000-times longer to achieve the same early photon count. A demonstration of the type of resolution possible is in Fig 1b with an image of a 4-mm-thick human breast cancer biopsy where tumor spiculations of less than 100 μm diameter are observable. 1Fieramonti, L. et al. PloS one (2012). 2Sinha, L., et al. Optics letters (2016).« less