skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2025064

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Geometric diodes (GDs) represent a relatively unconventional class of diode that produces an asymmetric current response through carrier transport in an asymmetric geometry. Synthesized from the bottom up, Si nanowire‐based GDs are three‐dimensional, cylindrically symmetric nanoscale versions capable of room‐temperature rectification at GHz‐THz frequencies with near zero‐bias turn‐on voltages. Here, by fabricating three‐terminal n‐type Si nanowire GDs with axial contacts and an omega‐gate electrode, a distinct class of reconfigurable self‐switching geometric diodes (SSGDs) is reported. Single‐nanowire SSGD device measurements demonstrate a significant dependence of diode current and polarity on gate potential, where the diode polarity reverses at a gate potential of ≈−1 V under specific grounding conditions. Finite‐element modeling reproduces the experimental results and reveals that the gate potential—in combination with the morphology and dopant profile—produces an asymmetric potential along the nanowire axis that changes asymmetrically with axial bias, altering the effective conductive channel within the nanowire to yield diode behavior. The self‐switching effect is retained in two‐terminal SSGD devices, and modeling demonstrates that both three‐terminal and two‐terminal devices support rectification through THz frequencies. The results reveal a new mechanism of operation for nanowire‐based GDs and characterize a new type of self‐switching diode with reconfigurable polarity. 
    more » « less
  2. Transition metal dichalcogenides (TMDCs) have garnered considerable interest over the past decade as a class of semiconducting layered materials. Most studies on the carrier dynamics in these materials have focused on the monolayer due to its direct bandgap, strong photoluminescence, and strongly bound excitons. However, a comparative understanding of the carrier dynamics in multilayer (e.g., >10 layers) flakes is still absent. Recent computational studies have suggested that excitons in bulk TMDCs are confined to individual layers, leading to room-temperature stable exciton populations. Using this new context, we explore the carrier dynamics in MoSe2 flakes that are between ∼16 and ∼125 layers thick. We assign the kinetics to exciton–exciton annihilation (EEA) and Shockley–Read–Hall recombination of free carriers. Interestingly, the average observed EEA rate constant (0.003 cm2/s) is nearly independent of flake thickness and 2 orders of magnitude smaller than that of an unencapsulated monolayer (0.33 cm2/s) but very similar to values observed in encapsulated monolayers. Thus, we posit that strong intralayer interactions minimize the effect of layer thickness on recombination dynamics, causing the multilayer to behave like the monolayer and exhibit an apparent EEA rate intrinsic to MoSe2. 
    more » « less