skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2027082

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundAdditively-manufactured parts contain residual stresses induced by manufacturing. These residual stresses can be relaxed or redistributed by thermal loading. The presence of internal stress influences the dynamic response of parts, and this is of particular interest in thin plates subject to thermoacoustic loading in hypersonic vehicles and fusion reactors. ObjectiveTo measure the changes in shape and modal frequencies caused by thermal loading of geometrically-reinforced thin plates that were additively manufactured in Inconel 625. MethodsPlates were additively-manufactured in landscape and portrait orientations using laser powder bed fusion. The plates were heated to a nominal temperature of 820 ̊C, which was expected to alleviate the residual stress from the build process. Pre- and post-heating, their modal frequencies were found experimentally and pulsed-laser stereo (3D) digital image correlation was used to evaluate their modal shapes. The resultant modal frequencies and shapes were compared with those from a subtractively-manufactured plate. ResultsIt was found that the heat cycle changed the shape of the plates relative to their as-manufactured state in addition to changing their natural frequencies and modal shapes. ConclusionsThe change in shape induced by heating caused shifts in the natural frequencies and changes in the corresponding modal shapes. The results show quantitatively for the first time the important role that residual stresses can play in the dynamic response of geometrically-reinforced thin plates manufactured by additive and subtractive processes. 
    more » « less
  2. Abstract Additive manufacturing (AM) is a powerful technique for producing metallic components with complex geometry relatively quickly, cheaply and directly from digital representations; however, residual stresses induced during manufacturing can result in distortions of components and reductions in mechanical performance, especially in parts that lack rotational symmetry and, or have cross sections with large aspect ratios. Geometrically reinforced thin plates have been built in nickel–chromium alloy using laser-powder bed fusion (L-PBF) and their shapes measured using stereoscopic digital image correlation before and after release from the base-plate of the AM machine. The results show that residual stresses cause potentially severe out-of-plane deformation that can be alleviated using either an enveloping support structure, which increased the build time substantially, was difficult to remove and wasted material, or using buttress supports to the reinforced edges of the thin plate. The buttresses were quick to build and remove, minimised waste but needed careful design. Plates built in a landscape orientation required out-of-plane buttresses while those built in a portrait orientation required both in-plane and out-of-plane buttresses. In both cases, out-of-plane deformation increased on release from the baseplate but this was mitigated by incremental release which resulted in out-of-plane deformations of less than 5% of the in-plane dimensions. 
    more » « less
  3. Free, publicly-accessible full text available March 1, 2027
  4. Free, publicly-accessible full text available August 7, 2026