skip to main content


Search for: All records

Award ID contains: 2029260

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We investigate the predictability of the sign of daily southeastern U.S. (SEUS) precipitation anomalies associated with simultaneous predictors of large-scale climate variability using machine learning models. Models using index-based climate predictors and gridded fields of large-scale circulation as predictors are utilized. Logistic regression (LR) and fully connected neural networks using indices of climate phenomena as predictors produce neither accurate nor reliable predictions, indicating that the indices themselves are not good predictors. Using gridded fields as predictors, an LR and convolutional neural network (CNN) are more accurate than the index-based models. However, only the CNN can produce reliable predictions that can be used to identify forecasts of opportunity. Using explainable machine learning we identify which variables and grid points of the input fields are most relevant for confident and correct predictions in the CNN. Our results show that the local circulation is most important as represented by maximum relevance of 850-hPa geopotential heights and zonal winds to making skillful, high-probability predictions. Corresponding composite anomalies identify connections with El Niño–Southern Oscillation during winter and the Atlantic multidecadal oscillation and North Atlantic subtropical high during summer.

     
    more » « less
  2. Abstract

    Ocean variability is a dominant source of remote rainfall predictability, but in many cases the physical mechanisms driving this predictability are not fully understood. This study examines how ocean mesoscales (i.e., the Gulf Stream SST front) affect decadal Southeast US (SEUS) rainfall, arguing that the local imprint of large‐scale teleconnections is sensitive to resolved mesoscale features. Based on global coupled model experiments with eddying and eddy‐parameterizing ocean, we find that a resolved Gulf Stream improves localized rainfall and remote circulation response in the SEUS. The eddying model generally improves the air‐sea interactions in the Gulf Stream and the North Atlantic Subtropical High that modulate SEUS rainfall over decadal timescales. The eddy‐parameterizing simulation fails to capture the sharp SST gradient associated with the Gulf Stream and overestimates the role of tropical Pacific SST anomalies in the SEUS rainfall.

     
    more » « less
  3. Free, publicly-accessible full text available June 22, 2024
  4. Key Points Subseasonal monsoon variability is linked to rainfall signals over U.S. Great Plains and its associated dynamical drivers A cause‐and‐effect algorithm verified a pathway from regional monsoon rainfall to Great Plains rainfall, which takes approximately 2 weeks Weekly East Asian monsoon rainfall is causally linked to Rossby wave excitation and active Great Plains convection about 1 week later 
    more » « less
  5. Abstract Quasi-decadal climate of the Kuroshio Extension (KE) is pivotal to understanding the North Pacific coupled ocean–atmosphere dynamics and their predictability. Recent observational studies suggest that extratropical-tropical coupling between the KE and the central tropical Pacific El Niño Southern Oscillation (CP-ENSO) leads to the observed preferred decadal time-scale of Pacific climate variability. By combining reanalysis data with numerical simulations from a high-resolution climate model and a linear inverse model (LIM), we confirm that KE and CP-ENSO dynamics are linked through extratropical-tropical teleconnections. Specifically, the atmospheric response to the KE excites Meridional Modes that energize the CP-ENSO (extratropicstropics), and in turn, CP-ENSO teleconnections energize the extratropical atmospheric forcing of the KE (tropicsextratropics). However, both observations and the model show that the KE/CP-ENSO coupling is non-stationary and has intensified in recent decades after the mid-1980. Given the short length of the observational and climate model record, it is difficult to attribute this shift to anthropogenic forcing. However, using a large-ensemble of the LIM we show that the intensification in the KE/CP-ENSO coupling after the mid-1980 is significant and linked to changes in the KE atmospheric downstream response, which exhibit a stronger imprint on the subtropical winds that excite the Pacific Meridional modes and CP-ENSO. 
    more » « less
  6. Abstract Based on observational estimates and global ocean eddy-resolving coupled retrospective initialized predictions, we show that Kuroshio Extension variability affects rainfall variability along the west coast of North America. We show that the teleconnection between the current undulations and downstream rainfall can lead to improved subseasonal to seasonal predictions of precipitation over California, and we demonstrate that capturing these teleconnections requires coupled systems with sufficient ocean resolution (i.e., eddy-resolving), especially over time scales longer than one season. The improved forecast skill is diagnosed in terms of 35 years of retrospective initialized ensemble forecasts with an ocean eddy-resolving and an ocean eddy-parameterized coupled model. Not only does the ocean eddy-resolving model show sensitivity to Kuroshio Extension variability in terms of western North America precipitation, but the ocean eddy-resolving forecasts also show improved forecast skill compared to the ocean eddy-parameterized model. The ocean eddy-parameterized coupled model shows no sensitivity to Kuroshio Extension variability. We also find near-decadal variability associated with a progression of a lower-tropospheric height dipole around the North Pacific and how these height anomalies lead to wind-driven Rossby waves that affect the eddy activity in the Kuroshio Extension with a time lag on the order of four years. This decadal-scale variability (~10 years) opens the possibility of multiyear predictability of western North American rainfall. 
    more » « less