skip to main content

Title: Subseasonal Great Plains Rainfall via Remote Extratropical Teleconnections: Regional Application of Theory‐Guided Causal Networks
Key Points Subseasonal monsoon variability is linked to rainfall signals over U.S. Great Plains and its associated dynamical drivers A cause‐and‐effect algorithm verified a pathway from regional monsoon rainfall to Great Plains rainfall, which takes approximately 2 weeks Weekly East Asian monsoon rainfall is causally linked to Rossby wave excitation and active Great Plains convection about 1 week later  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A survey of intraseasonal, seasonal, and interannual precipitation and 850 hPa winds for various monsoon regimes around the world is presented for the Community Earth System Model Version 2 (CESM2) compared to observations and the previous generation CESM1. In CESM2 the south Asian monsoon has a reduction of excessive precipitation in the western Indian Ocean and an increase of precipitation in the eastern Bay of Bengal and land areas of Vietnam, Cambodia, and Laos. The seasonal timing of the south Asian monsoon, monsoon‐ENSO connections, and monsoon intraseasonal variability all are improved compared to CESM1. For the Australian monsoon, deficient precipitation over the Maritime Continent has been improved in CESM2 with increases of precipitation over the large tropical islands of Borneo, Celebes, and Papua New Guinea and decreases over southwestern Australia. In the West African monsoon, May–June seasonal rainfall occurs more preferentially over the African coast in CESM2 as in observations, and excessive rainfall over the Ethiopian region is reduced. During July–September in the West African monsoon, deficient precipitation over equatorial Africa in CESM1 has been lessened in CESM2, and there are increases in precipitation over the Guinean coast, though there is little overall improvement in the South African monsoon. In the South American monsoon, precipitation in CESM2 is improved with increased precipitation over the Amazon in central and western Brazil. CESM2 simulates a reduction of excessive precipitation seen in CESM1 over coastal Mexico extending up into the U.S. Great Plains in the North American monsoon.

    more » « less
  2. Predicted climate change extremes, such as severe or prolonged drought, may considerably impact carbon (C) and nitrogen (N) cycling in water-limited ecosystems. However, we lack a clear and mechanistic understanding of how extreme climate change events impact ecosystem processes belowground. This study investigates the effects of five years of reoccurring extreme growing season drought (66% reduction, extreme drought treatment) and two-month delay in monsoon precipitation (delayed monsoon treatment) on belowground productivity and biogeochemistry in two geographically adjacent semi-arid grasslands: Chihuahuan Desert grassland dominated by Bouteloua eriopoda and Great Plains grassland dominated by B. gracilis. After five years, extreme drought reduced belowground net primary productivity (BNPP) in the Chihuahuan Desert grassland but not in the Great Plains grassland. Across both grasslands, extreme drought increased soil pH and available soil nutrients nitrate and phosphate. The delayed monsoon treatment reduced BNPP in both grasslands. However, while available soil nitrate decreased in the Chihuahuan Desert grassland, the delayed monsoon treatment overall had little effect on soil ecosystem properties. Extreme drought and delayed monsoon treatments did not significantly impact soil microbial biomass, exoenzyme potentials, or soil C stocks relative to ambient conditions. Our study demonstrates that soil microbial biomass and exoenzyme activity in semi-arid grasslands are resistant to five years of extreme and prolonged growing season drought despite changes to soil moisture, belowground productivity, soil pH, and nutrient availability 
    more » « less
  3. The northeast monsoon (NEM) brings the bulk of annual rainfall to southeastern peninsular India, Sri Lanka, and the neighboring Southeast Asian countries. This October–December monsoon is referred to as the winter monsoon in this region. In contrast, the southwest summer monsoon brings bountiful rainfall to the Indo-Gangetic Plain. The winter monsoon region is objectively demarcated from analysis of the timing of peak monthly rainfall. Because of the region’s complex terrain, in situ precipitation datasets are assessed using high-spatiotemporal-resolution Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, prior to their use in monsoon evolution, variability, and trend analyses. The Global Precipitation Climatology Center’s in situ analysis showed the least bias from TRMM.

    El Niño–Southern Oscillation’s (ENSO) impact on NEM rainfall is shown to be significant, leading to stronger NEM rainfall over southeastern peninsular India and Sri Lanka but diminished rainfall over Thailand, Vietnam, and the Philippines. The impact varies subseasonally, being weak in October and strong in November. The positive anomalies over peninsular India are generated by anomalous anticyclonic flow centered over the Bay of Bengal, which is forced by an El Niño–related reduction in deep convection over the Maritime Continent.

    The historical twentieth-century climate simulations informing the Intergovernmental Panel on Climate Change’s Fifth Assessment (IPCC-AR5) show varied deficiencies in the NEM rainfall distribution and a markedly weaker (and often unrealistic) ENSO–NEM rainfall relationship.

    more » « less
  4. Abstract

    In August 2022, Death Valley, the driest place in North America, experienced record flooding from summertime rainfall associated with the North American monsoon (NAM). Given the socioeconomic cost of these type of events, there is a dire need to understand their drivers and future statistics. Existing theory predicts that increases in the intensity of precipitation is a robust response to anthropogenic warming. Paleoclimatic evidence suggests that northeast Pacific (NEP) sea surface temperature (SST) variability could further intensify summertime NAM rainfall over the desert southwest. Drawing on this paleoclimatic evidence, we use historical observations and reanalyzes to test the hypothesis that warm SSTs on the southern California margin are linked to more frequent extreme precipitation events in the NAM domain. We find that summers with above-average coastal SSTs are more favorable to moist convection in the northern edge of the NAM domain (southern California, Arizona, New Mexico, and the southern Great Basin). This is because warmer SSTs drive circulation changes that increase moisture flux into the desert southwest, driving more frequent precipitation extremes and increases in seasonal rainfall totals. These results, which are robust across observational products, establish a linkage between marine and terrestrial extremes, since summers with anomalously warm SSTs on the California margin have been linked to seasonal or multi-year NEP marine heatwaves. However, current generation earth system models (ESMs) struggle to reproduce the observed relationship between coastal SSTs and NAM precipitation. Across models, there is a strong negative relationship between the magnitude of an ESM’s warm SST bias on the California margin and its skill at reproducing the correlation with desert southwest rainfall. Given persistent NEP SST biases in ESMs, our results suggest that efforts to improve representation of climatological SSTs are crucial for accurately predicting future changes in hydroclimate extremes in the desert southwest.

    more » « less
  5. Abstract

    Climate change affects Indian agriculture, which depends heavily on the spatiotemporal distribution of monsoon rainfall. Despite the nonlinear relationship between crop yield and rainfall, little is known about the optimal rainfall threshold, particularly for monsoon rice. Here, we investigate the responses of rice yield to monsoon rainfall in India by analyzing historical rice production statistics and climate data from 1990 to 2017. Results show that excessive and deficit rainfall reduces rice yield by 33.7% and 19%, respectively. The overall optimal rainfall threshold nationwide is 1621 ± 34 mm beyond which rice yield declines by 6.4 kg per hectare per 100 mm of rainfall, while the identifiable thresholds vary spatially across 14 states. The temporal variations in rice yield are influenced by rainfall anomalies featured by El Niño-Southern Oscillation events.

    more » « less